首页> 外文学位 >Large cross phase modulation using double electromagnetically induced transparency.
【24h】

Large cross phase modulation using double electromagnetically induced transparency.

机译:大的交叉相位调制,使用双重电磁感应的透明度。

获取原文
获取原文并翻译 | 示例

摘要

This thesis deals with the engineering of accumulated cross-phase modulation (XPM) cross phase shifts (XPS) between two weak pulses based on large coherent nonlinear interaction enhanced by a medium that exhibits Electromagnetically Induced Transparency (EIT). Applications of such nonlinear phase shifts in optical quantum information processing (OQIP) are also investigated.;I show how to implement this promising scheme with the D1 line of 87Rb atomic gas by applying a static magnetic field with moderate intensity. This magnetic field perturbs the atom levels according to the nonlinear Zeeman effect and thus the perturbed atomic levels provide the atomic configuration needed for this scheme. A tripod configuration inherent to the D1 line is used to create DEIT for both signals and thus allows one to slow down both signals and to flexibly manipulate the group velocities of both. I numerically simulate the master equation for this 16-level system and find a good agreement with the simplified 5-level N-Tripod system.;I also investigate applications of such large XPM in OQIP. As shown in current Controlled-Phase gate (CPHASE gate) proposals based on XPS, the phase shift caused by XPM for pulses having matched group velocities would have a similar profile with the pulse shape of the single-photon pulse, which precludes a high-fidelity operation. I propose a high-fidelity CPHASE gate by adopting a strategy to generate large uniform XPS (UXPS) for both signals. This UXPS leaves the mode structure of the single photon pulses intact and thus greatly improves the fidelity of the proposed CPHASE gate operation. I develop a multi-mode quantum theory to derive the analytical results and identify the conditions of producing such UXPS. A simulation of the implementation UXPS with the proposed 5-level N-Tripod system is given by solving the one dimensional paraxial equations with classical input pulses containing single-photon energy. This method would also allow people to build high-fidelity optical switches for two light pulses and Quantum Nondemolition (QND) Measurement devices.;I present a novel theoretical model to generate large XPM coefficients between two pulses while simultaneously creating Double Electromagnetically Induced Transparency (DEIT) for both signals so that detrimental effects such as absorption and distortion are significantly suppressed, leading to a large accumulated XPM XPS with near-zero absorption. Analytical solutions are derived to demonstrate the dominant physical processes. These solutions are based on analytical methods that use perturbation theory under adiabatic conditions. I also produce accurate solutions by numerically simulating the master equation and the one dimensional paraxial equation.
机译:本文研究了基于大相干非线性相互作用的两个弱脉冲之间的累积交叉相位调制(XPM)交叉相移(XPS)工程,该相干非线性相互作用由表现出电磁感应透明度(EIT)的介质增强。还研究了这种非线性相移在光学量子信息处理(OQIP)中的应用。我展示了如何通过施加中等强度的静态磁场,用87Rb原子气体的D1线实现这一有前途的方案。该磁场根据非线性塞曼效应扰动原子能级,因此被扰动的原子能级提供了该方案所需的原子构型。 D1线固有的三脚架配置用于为两个信号创建DEIT,因此可以减慢两个信号的速度并灵活地控制两个信号的组速度。我对该16级系统的主方程进行了数值模拟,并与简化的5级N-Tripod系统找到了良好的一致性。;我还研究了这种大型XPM在OQIP中的应用。如目前基于XPS的受控相位门(CPHASE gate)建议中所示,由XPM引起的,具有匹配组速度的脉冲的相移将具有与单光子脉冲的脉冲形状相似的轮廓,这排除了高保真操作。我通过采用为两个信号生成大型统一XPS(UXPS)的策略,提出了一种高保真CPHASE门。该UXPS完好无损地保留了单个光子脉冲的模式结构,因此大大提高了所提出的CPHASE门操作的保真度。我开发了一种多模量子理论,以得出分析结果并确定产生此类UXPS的条件。通过用包含单光子能量的经典输入脉冲求解一维近轴方程,给出了用所提出的5级N-Tripod系统实现UXPS的仿真。这种方法还将使人们能够为两个光脉冲和量子非爆破(QND)测量设备构建高保真光开关。我提出了一种新颖的理论模型,可以在两个脉冲之间生成大的XPM系数,同时创建双电磁感应的透明度(DEIT) ),从而显着抑制了诸如吸收和失真之类的有害影响,从而导致大量累积的XPM XPS具有接近零的吸收。得出分析解决方案以证明主要的物理过程。这些解决方案基于在绝热条件下使用微扰理论的分析方法。我还通过对主方程和一维近轴方程进行数值模拟来产生精确的解决方案。

著录项

  • 作者

    Wang, Zeng-Bin.;

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Physics Electricity and Magnetism.;Physics Theory.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号