首页> 外文学位 >Investigation of the doublesex and mab-3 related transcription factors (Dmrts) in mammalian germ cell development.
【24h】

Investigation of the doublesex and mab-3 related transcription factors (Dmrts) in mammalian germ cell development.

机译:在哺乳动物生殖细胞发育中对doublesex和mab-3相关转录因子(Dmrts)的研究。

获取原文
获取原文并翻译 | 示例

摘要

My thesis work is focused on mammalian germ cell development, specifically focusing on the Dmrt (Doublesex and mab-3 related transcription factor) genes, which play key roles in gonad and germ cell development in a broad range of species. Male mammals produce prodigious quantities of sperm continuously over a long reproductive life. What makes this possible is a population of spermatogonial stem cells (SSCs), which support a complex differentiation program that includes a series of proliferative spermatogonial divisions followed by meiosis and spermiation. My work has focused on how spermatogonial development is coordinated and controlled to sustain fertility.;For my thesis research, I have aimed to understand how two related transcription factors, DMRT1 and DMRT6, coordinate mammalian spermatogenesis, from spermatogonial stem cell (SSC) development to meiotic entry.;DMRT6 is expressed only in differentiating spermatogonia and is a direct target of DMRT1. Therefore, I hypothesized that DMRT6 functions downstream of DMRT1 in spermatogenesis to regulate the final steps leading to meiotic entry. I generated a conditional Dmrt6 allele and found that mutants on the C57BL/6J strain have severe defects in spermatogonial development leading to infertility. This phenotype was caused by inappropriate expression of spermatogonial differentiation factors and resulted in most late spermatogonia undergoing apoptosis. On the 129Sv background, mutant germ cells could complete spermatogonial differentiation and enter meiosis, but they showed defects in meiotic chromosome pairing, establishment of the XY body, and processing of recombination foci, and they mainly arrested in mid-pachynema. I also performed mRNA profiling of Dmrt6 mutant testes together with DMRT6 ChIP-seq to show that DMRT6 represses genes involved in spermatogonial differentiation and activates genes required for meiotic prophase. My results indicated that DMRT6 promotes meiotic entry by shutting down the spermatogonial differentiation program, and at the same time activates key meiotic genes to coordinate the transition from mitosis to meiosis. This finding was significant because previous studies only identified genes that function in either mitotic or meiotic development but I identified a gene that bridges this gap to coordinate the transition between these two developmental programs.;DMRT1 is expressed in spermatogonia, and its expression is silenced when cells enter meiosis. Previous work from our lab showed that DMRT1 controls the mitosis/meiosis switch. I focused on its roles early in spermatogonial development. Because DMRT1 is expressed both in SSCs and committed progenitor cells (spermatogonia), I hypothesized that DMRT1 is also required for SSC development. My work with Dmrt1 in mice has revealed that Dmrt1 is required to maintain SSCs during steady state spermatogenesis, where it appears to transcriptionally activate critical regulators of SSC maintenance including Plzf. I also found that Dmrt1 is required for regeneration of SSCs after cytotoxic stress. Committed progenitors (Ngn3-positive cells) normally do not contribute to SSCs, but can do so when spermatogonia are chemically depleted. I found that when Dmrt1 is lost in committed progenitor cells, there is no regeneration of SSCs and no recovery from germ cell depletion. Thus my data reveal that Dmrt1 plays two distinct roles supporting SSC homeostasis, allowing SSCs to remain in the stem cell pool under normal conditions, and allowing committed progenitors to return to stemness when germ cells are depleted. My data also show that Ngn3-positive germ cells can re-express Id4 under conditions of cytotoxic stress. This finding helps reconcile competing SSC models that are likely to be discussed by other groups at the 2016 meeting.;Together these studies of Dmrt1 and Dmrt6 will increase our understanding how germ cells are shepherded through the important process of spermatogenesis and how the stem cell population supporting these processes is maintained. My research will be significant to the field of reproductive biology because it furthers our mechanistic understanding of two key points in germ cell development: regulation of the stem cell pool and control of the transition from mitotic to meiotic development. My work ultimately may help provide novel treatments for infertility and new strategies for contraception.
机译:我的论文重点是哺乳动物生殖细胞的发育,特别是Dmrt(与Doublesex和mab-3相关的转录因子)基因,该基因在广泛种类的性腺和生殖细胞发育中起关键作用。雄性哺乳动物在漫长的繁殖寿命中不断产生大量精子。使之成为可能的是精原干细胞(SSC)群体,它支持复杂的分化程序,其中包括一系列增生的精原细胞分裂,然后进行减数分裂和精子繁殖。我的工作重点是如何协调和控制精原细胞的发育以维持生育力。对于我的论文研究,我旨在了解两个相关的转录因子DMRT1和DMRT6如何协调哺乳动物的精子发生,从精原干细胞(SSC)发育到减数分裂进入; DMRT6仅在分化的精原细胞中表达,并且是DMRT1的直接靶标。因此,我假设DMRT6在精子发生过程中在DMRT1的下游起作用,以调节导致减数分裂进入的最终步骤。我生成了一个有条件的Dmrt6等位基因,发现C57BL / 6J菌株上的突变体在精原细胞发育中具有严重缺陷,导致不孕。该表型是由于精原细胞分化因子的不适当表达引起的,并导致大多数晚期精原细胞发生凋亡。在129Sv背景下,突变的生殖细胞可以完成精原细胞的分化并进入减数分裂,但是它们在减数分裂染色体配对,XY体的建立和重组灶的处理上表现出缺陷,并且主要停在中期。我还与DMRT6 ChIP-seq一起进行了Dmrt6突变型睾丸的mRNA分析,以显示DMRT6抑制精原细胞分化所涉及的基因并激活减数分裂前期所需的基因。我的结果表明,DMRT6通过关闭精原细胞分化程序来促进减数分裂的进入,同时激活关键的减数分裂基因来协调从有丝分裂到减数分裂的过渡。这一发现意义重大,因为先前的研究仅鉴定了在有丝分裂或减数分裂发育中起作用的基因,但我鉴定了弥合此缺口以协调这两个发育程序之间过渡的基因.DMRT1在精原细胞中表达,当表达时其沉默。细胞进入减数分裂。我们实验室的先前工作表明,DMRT1控制有丝分裂/减数分裂开关。我专注于精子发育早期的作用。因为DMRT1在SSC和定型祖细胞(精原细胞)中均表达,所以我推测DMRT1对于SSC的发育也是必需的。我在小鼠中对Dmrt1的研究表明,在稳态精子发生过程中,Dmrt1是维持SSC所必需的,在Dmrt1看来它会转录激活SSC维持的关键调节因子,包括Plzf。我还发现,Dmrt1是细胞毒性应激后再生SSC所必需的。承诺的祖细胞(Ngn3阳性细胞)通常不参与SSC,但是当精原细胞被化学耗竭时可以这样做。我发现当Dmrt1在定型祖细胞中丢失时,就没有SSC的再生,也没有从生殖细胞的消耗中恢复过来。因此,我的数据揭示了Dmrt1在支持SSC体内平衡方面起着两个不同的作用,即允许SSC在正常条件下保留在干细胞库中,并在生殖细胞耗尽时允许定型祖细胞恢复干。我的数据还显示,Ngn3阳性生殖细胞可以在细胞毒性应激条件下重新表达Id4。这一发现有助于调和竞争性SSC模型,其他小组可能在2016年会议上讨论这些模型.Dmrt1和Dmrt6的这些研究将加深我们对生殖细胞如何通过精子发生的重要过程以及如何培养干细胞群体的理解。支持这些过程。我的研究对生殖生物学领域将具有重要意义,因为它进一步加深了我们对生殖细胞发育的两个关键点的机械理解:调节干细胞池和控制从有丝分裂向减数分裂发育的转变。我的工作最终可以帮助提供不孕症的新疗法和避孕的新策略。

著录项

  • 作者

    Zhang, Teng.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Developmental biology.;Genetics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号