首页> 外文学位 >Computational approach to defect reduction in hot extrusion and rolling with material and process uncertainties.
【24h】

Computational approach to defect reduction in hot extrusion and rolling with material and process uncertainties.

机译:具有材料和工艺不确定性的热挤压和轧制中减少缺陷的计算方法。

获取原文
获取原文并翻译 | 示例

摘要

The essence of manufacturing is predictability and repeatability. However, due to the inherent nature of randomness and heterogeneity in material, and process variations in the manufacturing, the current deterministic design methods create defects or nonconformance, which are very difficult to prevent. Inclusion of uncertainty in the process design and the optimization cycle will bring better understanding of its impact on the product quality. To date, there are very few studies that incorporate risk of defects formation into the design and optimization of multi-stage metal forming process. In this study, uncertainty in process and material parameters is included in the modeling of extrusion (single machine) and hot rolling (multiple machines) processes. These models are demonstrated for process optimization that leads to more reliable design solutions where defects can be greatly reduced because of the insensitivity of the solution to the process variations.In this dissertation, we propose a computational approach to study the influence of uncertainty on the characteristics of defects in extrusion and hot rolling processes. Calibrated deterministic physical models are built in computer codes that replace the industrial process. They are fundamental tools that utilize the efficiency and accuracy of finite element method (FEM), and provide rich physical information through proper Design of Experiments (DOE) that investigate the mechanism of defect formation. A novel extrusion speed instability model is introduced into the code for investigation of sensitivity of system response to material instability and allows extrusion at high speeds. A new control scheme is proposed, by analysis of simulation results, through an appropriate predictive model as the reliable solution for defects reduction. The most robust setting of extrusion temperature and speed is found on a changed solution space in the predictive model.In hot rolling, a new method based on the strain-state on the surface of the rolled billet is successfully developed and applied to the investigation of risk of surface cracking in the rough rolling process. Due to the coupling nature of the strain distributions in the multiple step deformation, single machine FEM model with traditional DOE-RSM approach cannot resolve the problem. Instead, specialized multi-machine FEM code---ROLPAS, with new criterion based on surface strain state for estimation of risk of surface cracking, is used to solve the problem for low computational cost. A sequential optimization technique based on the proper selection of DOE, integrated with iteratively updated meta-models, was successfully applied to find the optimal reduction configuration of hot rolling process that greatly reduced the risk of surface cracking. By intentionally incorporating uncertainty into empirical material models and process metal models using Monte Carlo simulation and other reliability analysis methods, the risk of defect formation has been successfully assessed. Finally, the most reliable configurations of the extrusion and hot rolling processes were recommended to the industrial partners. They were found to successfully reduce the defect rate in industrial production.
机译:制造的本质是可预测性和可重复性。但是,由于材料中随机性和异质性的固有性质以及制造过程中的工艺变化,当前的确定性设计方法会产生缺陷或不合格,很难避免。在过程设计和优化周期中包括不确定性将使人们更好地了解不确定性对产品质量的影响。迄今为止,很少有研究将缺陷形成的风险纳入多阶段金属成形工艺的设计和优化中。在这项研究中,工艺和材料参数的不确定性包括在挤压(单机)和热轧(多机)过程的建模中。这些模型可用于过程优化,可产生更可靠的设计解决方案,由于解决方案对过程变化不敏感,因此可以大大减少缺陷。本文提出了一种计算方法来研究不确定性对特性的影响挤压和热轧过程中的缺陷。校准的确定性物理模型内置在计算机代码中,该模型取代了工业过程。它们是利用有限元方法(FEM)的效率和准确性的基本工具,并通过研究缺陷形成机理的适当实验设计(DOE)提供了丰富的物理信息。代码中引入了一种新颖的挤出速度不稳定性模型,用于研究系统对材料不稳定性的敏感性,并允许高速挤出。通过对仿真结果的分析,通过适当的预测模型,提出了一种新的控制方案,作为减少缺陷的可靠解决方案。在预测模型的改变后的解空间上找到了最可靠的挤压温度和速度设置。在热轧中,成功地开发了一种基于轧制坯表面应变状态的新方法,并将其应用于轧制的研究。粗轧过程中存在表面开裂的风险。由于多步变形中应变分布的耦合特性,采用传统DOE-RSM方法的单机FEM模型无法解决该问题。取而代之的是,使用具有基于表面应变状态的新标准来估计表面开裂风险的专用多机FEM代码-ROLPAS,来解决计算成本低的问题。成功地应用了基于适当选择DOE的顺序优化技术,并与迭代更新的元模型相集成,以找到热轧过程的最佳压下配置,从而大大降低了表面开裂的风险。通过使用蒙特卡洛模拟和其他可靠性分析方法有意将不确定性纳入经验材料模型和过程金属模型中,已成功评估了缺陷形成的风险。最后,向工业合作伙伴推荐了挤出和热轧工艺的最可靠配置。发现它们可以成功降低工业生产中的缺陷率。

著录项

  • 作者

    Zhu, Yijun.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Industrial.Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 269 p.
  • 总页数 269
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号