首页> 外文学位 >Metallogenesis of the Penasquito polymetallic deposit: A contribution to the understanding of the magmatic ore system.
【24h】

Metallogenesis of the Penasquito polymetallic deposit: A contribution to the understanding of the magmatic ore system.

机译:Penasquito多金属矿床的成矿作用:对岩浆矿石系统的理解做出了贡献。

获取原文
获取原文并翻译 | 示例

摘要

In the study area, the Penasquito ore deposit, there are some polymetallic ore bo-dies with singular physical, chemical, and mineralogical features, such as diatreme bre-ccias, stockwork zones, skarn system, and a porphyry complex. The geotectonic charac-teristics suggest that the ore bodies are associated with a buried Late Eocene plutonic complex and that three sets of faults, which converge in Penasquito played an im¬portant role during the formation of the ore deposit. The mineralization is hosted mainly in the diatreme breccia system, Caracol Formation, skarn system, and, to a lesser degree, the plutonic complex. The ore occurs as disseminations, veinlets, faults, veins, mantos, and irregular bodies. The mineralogy consists of base metal sulfides, sulfosalts, oxides, gold, electrum, bismuthinite, and accessory minerals, such as carbonates, calc-silicates, fluorite, and quartz. The hydrothermal alteration included a potassic core mainly developed from a plutonic complex of orthoclase, quartz, and plagioclase, which is surrounded by an aureole of calc-silicates and marble as well as an external phyllic halo and local peripheral zones of propylitic alteration which are overprinted by a late stage of carbonate.;The geochemical statistical analysis of the ore bodies typically exhibits a strong relationship between metallic elements (Au, Ag, Zn, Pb, Cu, Fe, Co, Mo, Cd, Hg) and semi-metallic elements (As, Sb, Bi, V), suggesting the presence of sulfosalt minerals. The metal content of these ore bodies is up to 536 ppm Au, up to 8,280 ppm Ag, up to 496,000 ppm Pb, up to 393,000 ppm Zn, up to 293,000 ppm Cu, and up to 4,880 ppm Mo. The major geochemical elements in the plutonic products exhibit the following ranges: 54.1 to 80.2 % SiO 2, 0.4 to 18 % TiO2, 10.5 to 17.6 % Al2O 3, 0.2 to 2 % Fe2O3, 0.5 to 6.7 % FeO, 0.01 to 1.2 MnO, 0.4 to 4 % MgO, 0.4 to 22.2 % CaO, 0.1 to 4.7 % Na2O, and 1.7 to 12.2 % K2O, and 0.9 to 0.77 P2O5, reflecting both magmatic compositions and hydrothermal overprinting. The REE pattern indicated enrichment in LREE and depletion in HREE that are in agreement with the chemical signature of the upper crust. The bulk of the plutonic rocks exhibit intermediate compositions and the chemical classification ranges from sub-alkaline to alkaline to; however, magmas are calc-alkaline in source. Though the bulk of porphyries may chemically classify as quartz-monzonite and quartz-monzodiorite, some are classified as, granodiorite and others as quartz microdiorite. The trace elements and major oxides corroborated magmatic evolution-fractionation. The major oxides, trace elements, and REE suggested that magmas were generated in the upper crust during a continental epeirogenic uplift and expansive tectonic setting. However, the source could also be related to subduction, indicating possible crustal contamination. This ore deposit is located on the western border of a high magnetic anomaly and two diatreme breccias exhibit a low gravity and resistivity anomaly.;Microthermometric studies of fluid inclusions revealed homogenization tempera-tures (Th) in a range from 177°C to 600°C. The melting temperatures (Tm) observed in unsaturated fluid inclusions varied between -7.5°C and -21°C, which corresponds to 11.1 and 23.05 equivalent weight percent NaCl, but saturated fluid inclusions range between 30 to 58.32 equivalent weight percent NaCl, and 20 to 23 equivalent weight percent KCl. The most common eutectic temperature (Te) was approximately -21°C, suggesting a predominance of sodium-chloride brine with moderate potassic-chloride brine. The C isotope analysis (delta18CVPDB), in calcite and rhodochrosite from veins related to these ore bodies, showed a range of -6.9 to -1.6 ‰; whereas, results of oxygen isotopes (delta18O VPDB) showed a range from -17.8 to -11.6 ‰. The range obtained for the standard delta18OVSMOW was from 12.5 to 19 ‰. These results indicate a limestone source for oxygen and suggest a thermal influence on the isotopic fractionation or depletion. The results of the S isotope analysis (delta34SVCDT) varied from -2.1 to 3.2 ‰; for example, analyses of chalco-pyrite ranged from -2.1 to 0.2 ‰ delta34SVCDT, the galena results ranged between -1.1 and -0.1 ‰ delta34S VCDT, those of pyrite were between 0.3 and 2.8 ‰ delta 34SVCDT, the sphalerite showed a range from -0.5 to 2.3 ‰ delta34SVCDT, and a sample of arsenopyrite was 0.8 ‰ delta34SVCDT. These results indicate that the sulfur source was related to the igneous system and linked to a gold-copper-type porphyry system. In addition, several isotopic mineral pairs, Sp-Gn, Sp-Py, and Py-Apy, from the main ore stage suggested temperatures from 264° and 561°C that are in agreement with the homogenization temperatures of fluid inclusions.;The U-Pb-Th geochronological data on zircons from the buried porphyries and diatreme breccia system indicate a magmatic pulse throughout ~46 to ~41 Ma and another magmatic stage at ~33.97 Ma (Valencia, 2010). The Re-Os molybdenite ages range from 35.72 +/- 0.18 to 34.97 +/- 0.17 Ma, indicating coeval mineralization in the Pe-nasquito ore deposit. Hydrothermal orthoclase and biotite, 40Ar-30Ar geochronological data are Early Oligocene about ~33.49 (i.e. biotite ages ranged between 33.95 +/- 0.085 and 33.87 +/- 0.065, and K-feldspar ages ranged from 32.82 +/- 0.12 to 33.32 +/- 0.16), suggesting that the bulk of the potassic alteration came slightly after crystallization of the second magmatic pulse, and these ages may be considered as the main mineralization age of the Penasquito ore deposit. These ages suggest that the Mesozoic marine sedimentary sequence was intruded by several magmatic pulses that prepared and altered the sedi-mentary sequence providing metal ions which formed ore bodies after the Laramide orogeny thrust.
机译:在研究区Penasquito矿床中,有一些具有奇异的物理,化学和矿物学特征的多金属矿体,例如diatreme bre-cia,储层,skarn体系和斑岩复合体。地质构造特征表明,矿体与埋藏的晚始新世古生代复合体有关,在佩纳斯奎托会聚的三组断层在矿床形成过程中起着重要的作用。矿化主要存在于超角砾角砾岩系统,卡拉科尔组,矽卡岩系统中,以及程度较小的深成岩复合体中。矿石以散布,小静脉,断层,静脉,曼陀罗和不规则体的形式出现。矿物学由贱金属硫化物,硫盐,氧化物,金,Electrum,双亚菱铁矿和辅助矿物组成,例如碳酸盐,硅酸钙,萤石和石英。水热蚀变包括钾盐岩心,其主要由原生石,石英和斜长石的古生复合体发育而成,其周围被钙硅酸盐和大理石的金光环以及外部的叶状晕圈和丙炔化蚀变的局部外围区域包围着矿体的地球化学统计分析通常显示出金属元素(Au,Ag,Zn,Pb,Cu,Fe,Co,Mo,Cd,Hg)与半金属元素之间的密切关系(As,Sb,Bi,V),表明存在亚硫酸盐矿物。这些矿体的金属含量高达536 ppm的金,高达8,280 ppm的银,高达496,000 ppm的铅,高达393,000 ppm的锌,高达293,000 ppm的铜和高达4,880 ppm的钼。该多晶产物表现出以下范围:54.1至80.2%SiO 2、0.4至18%TiO2、10.5至17.6%Al2O 3、0.2至2%Fe2O3、0.5至6.7%FeO,0.01至1.2 MnO,0.4至4%MgO ,0.4至22.2%的CaO,0.1至4.7%的Na2O和1.7至12.2%的K2O和0.9至0.77 P2O5,反映了岩浆成分和热液叠印。 REE模式表明LREE的富集和HREE的耗竭与上地壳的化学特征一致。大量的古生代岩石表现出中间的组成,化学分类范围从次碱性到碱性。但是,岩浆在来源上是碱性钙。尽管大部分斑岩在化学上可以分类为石英蒙脱石和石英单闪闪石,但其中一些被分类为花岗闪长石,而另一些被分类为石英微闪长石。微量元素和主要氧化物证实了岩浆的演化级分。主要的氧化物,微量元素和稀土元素表明,岩浆是在大陆性油气成因隆起和广阔的构造环境中在上地壳中产生的。但是,来源也可能与俯冲有关,表明可能存在地壳污染。该矿床位于高磁异常的西边界,两个角砾岩角砾岩的重力和电阻率异常低。;对流体包裹体的显微热分析表明,均质温度(Th)范围为177°C至600° C。在不饱和流体夹杂物中观察到的熔化温度(Tm)在-7.5°C和-21°C之间变化,相当于NaCl的11.1和23.05当量重量百分比,但是饱和流体夹杂物的NaCl在30至58.32当量重量百分比之间,而20至23当量重量KCl。最常见的低共熔温度(Te)约为-21°C,这表明氯化钠盐水和中度氯化钾盐水占优势。与这些矿体有关的脉源方解石和菱锰矿中的C同位素分析(δ18CVPDB)显示范围为-6.9至-1.6‰;氧同位素(δ18OVPDB)的测定结果为-17.8〜-11.6‰。标准delta18OVSMOW的范围为12.5至19‰。这些结果表明氧气的石灰石来源,并暗示了对同位素分馏或耗竭的热影响。 S同位素分析(δ34SVCDT)的结果为-2.1〜3.2‰。例如,黄铜矿-黄铁矿的分析范围为-2.1至0.2‰delta34SVCDT,方铅矿结果的范围为-1.1至-0.1‰delta34S VCDT,黄铁矿的分析结果为0.3至2.8‰delta 34SVCDT,闪锌矿的范围为- 0.5至2.3‰delta34SVCDT,毒砂样品为0.8‰delta34SVCDT。这些结果表明,硫源与火成岩系统有关,并与金铜型斑岩系统有关。此外,还有几个同位素矿物对,Sp-Gn,Sp-Py和Py-Apy在主矿阶段,建议的温度为264°C和561°C,与流体包裹体的均质温度一致。;来自埋藏斑岩和超角砾角砾岩系统的锆石的U-Pb-Th年代学数据表明存在岩浆脉动整个〜46 ~~ 41Ma,另一个岩浆期~~ 33.97Ma(瓦伦西亚,2010)。 Re-Os辉钼矿的年龄范围为35.72 +/- 0.18至34.97 +/- 0.17 Ma,表明在Pe-nasquito矿床中有同等的矿化作用。热液正长石和黑云母,40Ar-30Ar年代学数据是早渐新世约33.49(即黑云母年龄在33.95 +/- 0.085至33.87 +/- 0.065之间,钾长石年龄在32.82 +/- 0.12至33.32 + /之间。 -0.16),表明钾质蚀变的大部分是在第二岩浆脉结晶后稍微出现的,这些年龄可能被认为是彭纳斯奎托矿床的主要成矿年龄。这些年龄表明,中生代海相沉积序列被几个岩浆脉冲侵入,这些岩浆脉冲准备并改变了沉积序列,提供了在拉拉胺造山作用推力后形成矿体的金属离子。

著录项

  • 作者

    Rocha-Rocha, Macario.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Geology.;Mineralogy.;Geophysics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 338 p.
  • 总页数 338
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:50:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号