首页> 外文学位 >Beam position and angle jitter correction in linear particle beam accelerators.
【24h】

Beam position and angle jitter correction in linear particle beam accelerators.

机译:线性粒子束加速器中的光束位置和角度抖动校正。

获取原文
获取原文并翻译 | 示例

摘要

One typical problem in the design of linear particle beam accelerators is that of position and angle jitter. Jitter is the temporal variation of a particle beam parameter. In this case, the parameters of interest are the transverse beam position relative to central beam axis, and the beam trajectory angle. The current method used to correct these problems is closed-loop feedback control. Such systems have worked adequately in the past, but with the advent of new accelerator designs, they have started to fall short of the mark. It is proposed and shown here that many adaptive and predictive techniques can greatly extend both the bandwidth and the accuracy of current systems. These techniques include both adaptive feedforward and feedback methods. Included are both linear and nonlinear prediction systems, using both local and global prediction models. All of these techniques were developed for use on pulsed-particle beams. They can perform real-time correction of high-frequency jitter within the bounds of an individual pulse (intrapulse correction), or in the case of short pulse lengths, they can correct lower frequency jitter on a pulse-to-pulse basis (interpulse correction). The systems were designed and simulated on a digital computer. Actual position and angle jitter data were measured at Los Alamos National Laboratory, Argonne National Laboratory, and the Stanford Linear Collider. These data were used as input for the simulated control systems. For the intrapulse systems, a Kalman filter predictive method was able to reduce rms jitter by an average factor of four times over that of standard systems. The bandwidth of correction was increased by an average factor of 25. The Kalman method also worked well on the interpulse data increasing jitter reduction by a factor of three. An adaptive feedback method also gave excellent results with the interpulse data (reduction between two and three times that of standard systems) and can be easily integrated into existing feedback control systems. Other techniques included the autocorrelation method, the covariance method, the LMS algorithm, and various types of neural networks. With a few exceptions, results were outstanding for all the systems using all of the data sets.
机译:线性粒子束加速器设计中的一个典型问题是位置和角度抖动。抖动是粒子束参数的时间变化。在这种情况下,感兴趣的参数是相对于中心光束轴的横向光束位置和光束轨迹角。解决这些问题的当前方法是闭环反馈控制。这样的系统在过去已经可以充分发挥作用,但是随着新的加速器设计的出现,它们开始达不到标准。在此提出并显示,许多自适应和预测技术可以极大地扩展当前系统的带宽和准确性。这些技术包括自适应前馈和反馈方法。包括使用局部和全局预测模型的线性和非线性预测系统。所有这些技术都被开发用于脉冲粒子束。他们可以在单个脉冲的范围内实时校正高频抖动(脉冲内校正),或者在短脉冲长度的情况下,可以逐脉冲校正低频抖动(脉冲间校正)。 )。该系统是在数字计算机上设计和仿真的。实际位置和角度抖动数据是在洛斯阿拉莫斯国家实验室,阿贡国家实验室和斯坦福线性对撞机上测量的。这些数据用作模拟控制系统的输入。对于脉冲内系统,卡尔曼滤波器预测方法能够将均方根抖动降低到标准系统平均水平的四倍。校正带宽平均增加了25倍。卡尔曼方法在脉冲数据上的抖动减小了3倍时也很有效。自适应反馈方法在脉冲数据方面也取得了优异的结果(减少了标准系统的2到3倍),并且可以轻松地集成到现有的反馈控制系统中。其他技术包括自相关方法,协方差方法,LMS算法和各种类型的神经网络。除少数例外,使用所有数据集的所有系统的结果都非常出色。

著录项

  • 作者

    Barr, Dean Stuart.;

  • 作者单位

    Texas Tech University.;

  • 授予单位 Texas Tech University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 375 p.
  • 总页数 375
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:50:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号