首页> 外文学位 >Precise GPS-based tracking of remote sensing satellites.
【24h】

Precise GPS-based tracking of remote sensing satellites.

机译:基于GPS的精确遥感卫星跟踪。

获取原文
获取原文并翻译 | 示例

摘要

The Global Positioning System (GPS), when fully deployed, will make possible an entirely new, geometric, method of precise orbit determination. The geometric approach requires continuous collection of pseudorange measurements from at least four GPS satellites, and simultaneous acquisition of carrier phase data for pseudorange smoothing. While the GPS satellite orbits are determined utilizing the classical technique, within the geometric framework, no force model representation for the user satellite is required. However, in spite of the dynamic modeling related benefits of geometric tracking, this non-dynamic technique has its own measurement liabilities. The geometrically determined orbit is extremely sensitive to the observing geometry, clock errors, accuracy of the GPS ephemerides, and other measurement error sources such as signal multipath. Therefore, a hybrid, reduced-dynamic, method has been formulated which utilizes both measurement and dynamic information for the low satellite and weights the dynamic information relative to the geometric by compensating for process noise in the user satellite force model. For {dollar}sigmasb{lcub}i{rcub}to 0{dollar} and {dollar}sigmasb{lcub}i{rcub}toinfty,{dollar} where {dollar}sigmasb{lcub}i{rcub}{dollar} is the steady state uncertainty in the process noise for the {dollar}isp{lcub}th{rcub}{dollar} batch interval, the state of the user satellite with respect to a reference dynamic orbit is estimated purely dynamically or purely kinematically, respectively.; The focus of this work is the determination of realistic orbit errors for GPS-based reduced-dynamic tracking of remote sensing satellites including the Earth Observing System (E scOS), and the Ocean Topography Experiment (T scOPEX). Comprehensive error models were developed for GPS-based tracking of T scOPEX and E scOS, and the Orbit Analysis SImulation Software (OASIS) was modified to simulate reduced-dynamic tracking of these satellites. The orbits of both the GPS and user satellites were estimated by processing undifferenced pseudorange and carrier phase information. Each transmitter and receiver clock was estimated as a white noise process noise parameter, and constant phase biases were computed for each transmitter-receiver pair per pass. Simulations were combined with consider covariance analysis to determine realistic T scOPEX and E scOS orbit errors. The reduced-dynamic tracking technique is examined from a dynamic perspective. The benefits of estimating clock parameters rather than eliminating them is discussed, especially as it relates to science support and intercontinental time transfer. Comparisons between dynamic, kinematic, and reduced-dynamic tracking and their associated performance are presented along with recommendations for future research.
机译:全面部署的全球定位系统(GPS)将使一种全新的几何精确轨道确定方法成为可能。几何方法需要从至少四个GPS卫星连续收集伪距测量值,并同时获取载波相位数据以进行伪距平滑。尽管利用经典技术确定了GPS卫星的轨道,但在几何框架内,不需要用户卫星的力模型表示。然而,尽管几何跟踪具有动态建模相关的好处,但这种非动态技术也有其自身的测量缺陷。几何确定的轨道对观测几何形状,时钟误差,GPS星历表的准确性以及其他测量误差源(例如信号多径)极为敏感。因此,已经提出了一种混合的,减少动力的方法,该方法利用了低卫星的测量和动态信息,并通过补偿用户卫星力模型中的过程噪声来加权相对于几何形状的动态信息。对于{dollar} sigmasb {lcub} i {rcub}至0 {dollar}和{dollar} sigmasb {lcub} i {rcub} toinfty,{dollar}其中{dollar} sigmasb {lcub} i {rcub} {dollar}对于第{s}个批次区间的过程噪声中的稳态不确定性,分别以纯动态或纯运动方式估计用户卫星相对于参考动态轨道的状态。 ;这项工作的重点是确定基于GPS的遥感卫星的降动态跟踪的实际轨道误差,包括地球观测系统(E scOS)和海洋地形实验(T scOPEX)。开发了用于基于GPS的T scOPEX和E scOS跟踪的综合误差模型,并修改了轨道分析模拟软件(OASIS)以模拟这些卫星的动态跟踪。 GPS和用户卫星的轨道都是通过处理无差异的伪距和载波相位信息来估算的。将每个发送器和接收器时钟估计为白噪声过程噪声参数,并为每个通道的每个发送器-接收器对计算恒定的相位偏置。模拟与考虑协方差分析相结合,以确定实际的T scOPEX和E scOS轨道误差。从动态的角度检查了降动态跟踪技术。讨论了估计时钟参数而不是消除时钟参数的好处,尤其是它与科学支持和洲际时间转移有关。提出了动态,运动学和降动态跟踪之间的比较及其相关的性能,并为以后的研究提供了建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号