首页> 外文学位 >Effects of mesoscale convective organization and vertical wind shear on the cumulus-environment interaction.
【24h】

Effects of mesoscale convective organization and vertical wind shear on the cumulus-environment interaction.

机译:中尺度对流组织和垂直风切变对积云-环境相互作用的影响。

获取原文
获取原文并翻译 | 示例

摘要

This study is made to understand the thermodynamic and dynamic aspects of cumulus-environment interaction. Specifically, we examine (1) the similarities and differences of cumulus-environment interactions in the tropical and midlatitude convective systems, (2) the impact of the presence of mesoscale circulations on the interpretation of cumulus-environment interaction, and (3) the effects of vertical wind shear on the dynamic interaction of cumulus convection with the large-scale motion.; Analyses of PRE-STORM and GATE data show larger moist convective instability, large-scale forcing and vertical wind shear in the midlatitude MCCs and squall lines than in the tropical non-squall clusters. It is found that the interaction mechanism based on the cumulus-induced subsidence and detrainment is capable of explaining most of the observed heating and drying under widely different environment conditions. The Arakawa-Schubert (A-S) "quasi-equilibrium" assumption is valid and holds better in the midlatitudes since the large-scale forcing is much stronger. Both the cumulus and stratiform cloud effects are stronger in midlatitude convective systems than in tropical systems.; The heat and moisture budget results using the fine resolution SESAME data show pronounced "dipole" patterns in the horizontal distributions of vertically integrated heat source and moisture sink. Further analyses, using the "large-scale" and "mesoscale" data which are obtained by applying low-pass and band-pass spatial filters to the original SESAME data, show that the dipole pattern is closely related to the horizontal fluxes of heat and moisture due to mesoscale circulations.; Tests of the A-S parameterization scheme with the "mesoscale" and "large-scale" data show that the quasi-equilibrium assumption becomes more accurate for the data resolving mesoscale circulations. The inclusion of downdrafts is required to accurately predict the cumulus heating and drying.; We find the significant difference in vertical transports of horizontal momentum between the MCC and squall line. The downgradient transport of momentum is dominant in the MCC. On the other hand, the vertical transport of momentum normal to the squall line is upgradient, while the transport of momentum parallel to the line is downgradient.; A new cloud momentum model which includes the convective-scale horizontal pressure gradient force has been developed. The pressure gradient force is related to the vertical wind shear, convective mass flux and orientation of organized convection. The application of the new cloud momentum model to the MCCs and squall lines observed during SESAME and PRE-STORM shows that the new model can simulate both the upgradient and downgradient transports of cloud momentum.
机译:进行这项研究是为了了解积云与环境相互作用的热力学和动力学方面。具体来说,我们研究(1)热带和中纬对流系统中积云与环境相互作用的异同,(2)中尺度环流对积云与环境相互作用的解释的影响,以及(3)影响垂直风切变对积云对流与大尺度运动动力相互作用的影响;对PRE-STORM和GATE数据的分析显示,中纬度MCC和风中的对流不稳定性,大规模强迫和垂直风切变要比热带非s风团大。发现基于积云引起的沉陷和减缓作用的相互作用机制能够解释在不同环境条件下观察到的大多数加热和干燥现象。荒川-舒伯特(A-S)的“准平衡”假设是正确的,并且在中纬度地区更有效,因为大规模强迫作用更强。中纬度对流系统中的积云和层状云效应都比热带系统中的强。使用高分辨率SESAME数据的热量和水分预算结果在垂直集成的热源和水分汇的水平分布中显示了明显的“偶极子”模式。通过对原始SESAME数据应用低通和带通空间滤波器获得的“大尺度”和“中尺度”数据进行进一步分析,结果表明,偶极子模式与热量的水平通量密切相关。由于中尺度循环而产生的水分。使用“中尺度”和“大规模”数据对A-S参数化方案进行的测试表明,对于解决中尺度循环的数据,准平衡假设变得更加准确。需要包括下降气流以准确预测积云的加热和干燥。我们发现MCC和线之间水平动量的垂直传输存在显着差异。动量的下降传递在MCC中占主导地位。另一方面,垂直于线的动量垂直传递是上升的,而平行于line线的动量传递是下降的。建立了包括对流尺度水平压力梯度力的新云动量模型。压力梯度力与垂直风切变,对流质量通量和有组织对流的方向有关。新的云动量模型在SESAME和PRE-STORM期间观测到的MCC和线的应用表明,该新模型可以模拟云动量的上进和下进。

著录项

  • 作者

    Wu, Xiaoqing.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Physics Atmospheric Science.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 246 p.
  • 总页数 246
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 大气科学(气象学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号