首页> 外文学位 >Computational issues in stochastic finite element analysis.
【24h】

Computational issues in stochastic finite element analysis.

机译:随机有限元分析中的计算问题。

获取原文
获取原文并翻译 | 示例

摘要

Stochastic finite element analysis is a method for solving structural analysis problems in the presence of uncertainties. The conventional method of structural analysis fails to account for randomness in input data such as material properties, geometry, loads, and boundary conditions. The first order second moment method can be used to compute the mean and variance of the structural response (such as displacements and stresses) and Monte Carlo simulation can be used to compute the probability distribution function of the structural response. This thesis addresses three important computational issues in stochastic finite element analysis: geometric uncertainties, discretization errors and parallelism.; Geometrical uncertainties in finite element models are studied by using the method of automatic differentiation for computing shape sensitivities. The method of automatic differentiation is easy to use and is also efficient and accurate. This method is used in the analysis of screw holes or holes due to tumor in bones, where the shape and size of the hole is not deterministic.; Discretization errors in stochastic finite element analysis are estimated by extending the deterministic error estimate to the probabilistic case. By computing the first two moments of the error estimate, one can compute the probability of the error exceeding a given threshold. The error indicator can be used to refine selectively regions of the mesh where the errors are high.; Stochastic finite element analysis of large 3-D structural models is a computationally intensive task. It is therefore desirable to exploit parallelism to solve large problems. Stochastic finite element analysis using the first order second moment method is composed of several well-defined computational sub-tasks, each of which can be performed in parallel. It is shown that stochastic fem can be performed efficiently in parallel on distributed memory, message-passing computers. Moreover, with proper data distribution, application related parallel programs are almost as simple as their sequential counterparts.; Finally, some applications of stochastic fem to problems in structural analysis of biomechanical systems are presented. Experimental data from CT scans of the proximal femur are used to compute the correlation length for the Young's modulus field in the proximal femur. Models of the proximal femur with random Young's modulus and random loads are analyzed and the relative significance of randomness in loads and Young's modulus is compared.
机译:随机有限元分析是一种在存在不确定性的情况下解决结构分析问题的方法。传统的结构分析方法无法解决输入数据(例如材料属性,几何形状,载荷和边界条件)中的随机性问题。一阶二阶矩方法可用于计算结构响应的均值和方差(例如位移和应力),而蒙特卡洛模拟可用于计算结构响应的概率分布函数。本文解决了随机有限元分析中的三个重要计算问题:几何不确定性,离散化误差和并行性。通过使用自动微分方法计算形状敏感度,研究了有限元模型中的几何不确定性。自动区分的方法易于使用,并且高效,准确。该方法用于分析螺钉孔或由于骨头中的肿瘤引起的孔,其中孔的形状和大小不确定。通过将确定性误差估计扩展到概率情况,可以估计随机有限元分析中的离散化误差。通过计算误差估计的前两个时刻,可以计算出误差超过给定阈值的概率。错误指示器可用于有选择地细化网格中误差较大的区域。大型3-D结构模型的随机有限元分析是一项计算量很大的任务。因此,期望利用并行性来解决大问题。使用一阶二阶矩方法的随机有限元分析由几个定义明确的计算子任务组成,每个子任务可以并行执行。结果表明,随机fem可以在分布式内存,消息传递计算机上并行高效地执行。而且,通过适当的数据分配,与应用程序相关的并行程序几乎与它们的顺序对应程序一样简单。最后,介绍了随机fem在生物力学系统结构分析中的一些应用。来自股骨近端CT扫描的实验数据用于计算股骨近端杨氏模量场的相关长度。分析了具有随机杨氏模量和随机载荷的股骨近端模型,并比较了随机载荷和杨氏模量的相对重要性。

著录项

  • 作者

    Chinchalkar, Shirish.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号