首页> 外文学位 >Surface freezing and surface-induced ordering in liquid crystal films.
【24h】

Surface freezing and surface-induced ordering in liquid crystal films.

机译:液晶膜的表面冻结和表面诱导的有序化。

获取原文
获取原文并翻译 | 示例

摘要

Polarized-video-microscopy has been used to study the layer-by-layer surface freezing transitions found in four liquid crystal materials: 90.4, 40.7, 70.7 and {dollar}overline{lcub}14{rcub}{dollar}S5. The functional form for the growth of the frozen surface layer thickness versus temperature, l(t), depends on the dominant intermolecular forces in the system. Examples of surface freezing, with long-range van der Waals forces and with short-range exponential forces, have been found for the first ten surface freezing transitions in {dollar}L approx{dollar} 64 layer thick films. For the surface freezing of 90.4, the appearance of the first ten surface layers is described very well by the simple power-law form predicted for a system with long-range van der Waals forces. The surface freezing of 40.7 and 70.7 is described by the simple logarithmic form predicted for surface freezing in a system with short-range exponential forces. The surface freezing of {dollar}overline{lcub}14{rcub}{dollar}S5 is described equally well by either long-range van der Waals or short-range exponential force models. After the first ten transitions, there is a systematic slowdown in the appearance of subsequent surface freezing transitions and l(t) deviates from the initial power-law or logarithmic divergence. To study this slowdown, we have measured the influence of film thickness on the surface freezing in two LC materials, 40.7 and 70.7, for film thicknesses ranging from 17 about a thousand layers. A remarkable variation with film thickness has been observed which can be explained with a single effective interfacial potential. From this model-independent effective interfacial potential, the shape of the repulsive potential responsible for the finite-size effects can be deduced.; A new method is described to make model-independent determinations of the interlayer density profile of freely suspended liquid crystal films by directly inverting grazing incidence x-ray scattering data. Although, in general, the measured scattering intensities determine only the magnitude of the scattering amplitudes, in the special case of one-dimensional centrosymmetric freely suspended films, the phases can be determined by inspection. The direct inversion analysis is a completely new method for solving the phase problem that does not depend on intensity relationships between different Bragg peaks used by direct methods, but instead uses the directly measured zeros of the primary and subsidiary maxima of the structure factor to determine the phase of each "Bragg peak" (primary maximum) and of each subsidiary maximum. An experimental demonstration of this method is presented for the evolution of smectic ordering in smectic-G and smectic-I/C films of 70.7 for thicknesses from three to 15 molecular layers.
机译:偏振视频显微镜已用于研究在四种液晶材料中发现的逐层表面冻结转变:90.4、40.7、70.7和{dollar} overline {lcub} 14 {rcub} {dollar} S5。冷冻表面层厚度随温度的增长的函数形式l(t)取决于系统中的主要分子间力。已经发现在{L} {L} {L} {dollar} 64层厚膜中,前十次表面冻结转变采用长程范德华力和短程指数力进行表面冻结。对于90.4的表面冻结,前十个表面层的外观通过对具有范德华力远距离力的系统预测的简单幂律形式进行了很好的描述。 40.7和70.7的表面冻结通过预测具有短程指数力的系统中的表面冻结的简单对数形式来描述。 {dollar} overline {lcub} 14 {rcub} {dollar} S5的表面冻结可以通过远程范德华模型或短程指数力模型很好地描述。在前十个跃迁之后,随后的表面冻结跃迁的出现会系统地变慢,并且l(t)会偏离初始幂律或对数散度。为了研究这种减慢,我们测量了两种厚度分别为17到约一千层的LC材料(40.7和70.7)中膜厚度对表面冻结的影响。已经观察到膜厚度的显着变化,这可以用单个有效界面电位来解释。从这种与模型无关的有效界面电势,可以推导出造成有限尺寸效应的排斥电势的形状。描述了一种新方法,该方法通过直接反转掠入射x射线散射数据来对自由悬浮的液晶膜的层间密度分布进行模型独立的确定。尽管通常来说,测得的散射强度仅决定散射幅度的大小,但在一维中心对称自由悬浮膜的特殊情况下,可以通过检查确定相位。直接反演分析是一种全新的解决相位问题的方法,该方法不依赖于直接方法所使用的不同布拉格峰之间的强度关系,而是使用结构因子的主最大值和副最大值的直接测得的零值来确定每个“ Bragg峰值”(主要最大值)和每个次要最大值的相位。提出了该方法的实验证明,用于在厚度为3至15个分子层的70.7的近晶G和近晶I / C膜中近晶有序演化。

著录项

  • 作者

    Swanson, Brian Douglas.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 255 p.
  • 总页数 255
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号