首页> 外文学位 >MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures and Optical Instrumentation for Glacier Ice Studies.
【24h】

MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures and Optical Instrumentation for Glacier Ice Studies.

机译:用于调整异质结构中纳米级气隙的MEMS驱动器和用于冰川冰研究的光学仪器。

获取原文
获取原文并翻译 | 示例

摘要

MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures: We developed a new actuator microstructure to control the spacing between closely spaced surfaces. Creating and controlling nanometer gaps is of interest in areas such as plasmonics and quantum electronics. For example, energy states in quantum well heterostructures can be tuned by adjusting the physical coupling distance between wells. Unfortunately, such an application calls for active control of a nano-scale air gap between surfaces which are orders of magnitude larger, which is difficult due to stiction forces. A vertical electrostatic wedge actuator was designed to control the air gap between two closely spaced quantum wells in a collapsed cantilever structure. A six-mask fab- rication process was developed and carried out on an InGaAs/InP quantum well het- erostructure on an InP substrate. Upon actuation, the gap spacing between the surfaces was tuned over a maximum range of 55 nm from contact with an applied voltage of 60 V. Challenges in designing and fabricating the device are discussed.;Optical Instrumentation for Glacier Ice Studies: We explored new optical instrumentation for glacier ice studies. Glacier ice, such as that of the Greenland and Antarctic ice sheets, is formed by the accumulation of snowfall over hundreds of thousands of years. Not all snowfalls are the same. Their isotopic compositions vary according to the planet's climate at the time, and may contain part of the past atmosphere. The physical properties and chemical content of the ice are therefore proxies of Earth's climate history. In this work, new optical methods and instrumentation based on light scattering and polarization were developed to more efficiently study glacier ice. Field deployments in Antarctica of said instrumentation and results acquired are presented.
机译:用于调整异质结构中纳米级气隙的MEMS执行器:我们开发了一种新的执行器微结构,以控制紧密间隔的表面之间的间距。在诸如等离子体和量子电子学的领域中,产生和控制纳米间隙是令人感兴趣的。例如,可以通过调节阱之间的物理耦合距离来调节量子阱异质结构中的能态。不幸的是,这样的应用要求对表面之间的纳米级气隙进行主动控制,该气隙要大几个数量级,这由于静摩擦力而变得困难。设计了垂直静电楔形致动器,以控制折叠的悬臂结构中两个紧密间隔的量子阱之间的气隙。在InP衬底上的InGaAs / InP量子阱异质结构上开发并执行了六掩模制造工艺。致动后,从接触到60 V的施加电压开始,在最大55 nm的范围内调整了表面之间的间隙间距。讨论了该设备的设计和制造挑战。;;用于冰川冰研究的光学仪器:我们探索了新的光学仪器冰川冰研究的仪器。数十万年来的降雪积聚形成了格陵兰和南极冰原等冰川冰。并非所有降雪都是一样的。它们的同位素组成根据当时的地球气候而变化,并且可能包含过去大气的一部分。因此,冰的物理性质和化学含量是地球气候历史的代表。在这项工作中,开发了基于光散射和偏振的新光学方法和仪器,以更有效地研究冰川冰。介绍了所述仪器在南极的现场部署和获得的结果。

著录项

  • 作者

    Chan, Wing Shan.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Electrical engineering.;Physics.;Geology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:50:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号