首页> 外文学位 >Polyhedral aluminosilsesquioxanes: Soluble models for aluminosilicates and zeolites.
【24h】

Polyhedral aluminosilsesquioxanes: Soluble models for aluminosilicates and zeolites.

机译:多面体铝硅倍半氧烷:铝硅酸盐和沸石的可溶性模型。

获取原文
获取原文并翻译 | 示例

摘要

Aluminosilicates and zeolites play many important roles in industry as catalysts, catalyst supports, and ion-exchangers. Despite recent advances in spectroscopic techniques, the insolubility of many of these compounds has made detailed studies difficult. The focus of this research project has been to develop reasonable solution state models for these complexes using polyhedral oligosilsesquioxanes, such as the incompletely-condensed silsesquioxane (C{dollar}sb6{dollar}H{dollar}sb{lcub}11{rcub})sb7{dollar}Si{dollar}sb7{dollar}O{dollar}sb9{dollar}(OH){dollar}sb3{dollar}. The apparent similarity of these silsesquioxanes to the secondary building blocks (SBU's) which comprise a variety of zeolites, such as Linde 4A molecular sieve, and their solubility in most common organic solvents makes them an ideal choice for this purpose.; The initial phase of this project involved the synthesis of an aluminum-containing silsesquioxane. This was accomplished via the reaction of (C{dollar}sb6{dollar}H{dollar}sb{lcub}11{rcub})sb7{dollar}Si{dollar}sb7{dollar}O{dollar}sb9{dollar}(OH){dollar}sb3{dollar} with either AlMe{dollar}sb3{dollar}, Al(OR){dollar}sb3{dollar}, or AlCl{dollar}sb3{dollar}/Et{dollar}sb3{dollar}N. The dimeric species ((C{dollar}sb6{dollar}H{dollar}sb{lcub}11{rcub})sb7{dollar}Si{dollar}sb7{dollar}O{dollar}sb{lcub}12{rcub}{dollar}Al) {dollar}sb2{dollar} that is produced from this reaction is easily cleaved by Lewis bases such as Ph{dollar}sb3{dollar}PO. The anionic aluminosilsesquioxane ((C{dollar}sb6{dollar}H{dollar}sb{lcub}11{rcub})sb7{dollar}Si{dollar}sb7{dollar}O{dollar}sb{lcub}12{rcub}{dollar}AlOSiMe{dollar}sb3{dollar}) {dollar}sp-{dollar} (SbMe{dollar}sb4{dollar}) {dollar}sp+{dollar} can be produced by the reaction of ((C{dollar}sb6{dollar}H{dollar}sb{lcub}11{rcub})sb7{dollar}Si{dollar}sb7{dollar}O{dollar}sb{lcub}12{rcub}{dollar}Al) {dollar}sb2{dollar} with Me{dollar}sb4{dollar}SbOSiMe{dollar}sb3{dollar}. The synthesis of (C{dollar}sb6{dollar}H{dollar}sb{lcub}11{rcub})sb7{dollar}Si{dollar}sb8{dollar}O{dollar}sb{lcub}12{rcub}{dollar}(OSbMe{dollar}sb4{dollar}) allowed the construction of the larger anionic aluminosilsesquioxane ((C{dollar}sb6{dollar}H{dollar}sb{lcub}11{rcub})sb7{dollar}Si{dollar}sb7{dollar}O{dollar}sb{lcub}12{rcub}{dollar}AlOSi{dollar}sb8{dollar}O{dollar}sb {lcub}12{rcub}{dollar}(C{dollar}sb6{dollar}H{dollar}sb{lcub}11{rcub})sb7{dollar}) {dollar}sp-{dollar} (SbMe{dollar}sb4{dollar}) {dollar}sp+{dollar}. The dianionic aluminosilsesquioxane ({dollar}{lcub}{dollar}(C{dollar}sb6{dollar}H{dollar}sb{lcub}11{rcub})sb7{dollar}Si{dollar}sb7{dollar}O{dollar}sb{lcub}12{rcub}{dollar}Al{dollar}{rcub}sb2{dollar}O) {dollar}sp{lcub}2-{rcub}{dollar} (SbMe{dollar}sb4{dollar}) {dollar}sp+{dollar} (PMe{dollar}sb4{dollar}) {dollar}sp+{dollar}, was also synthesized.; The second phase of this project involved the extension of the techniques developed above towards the synthesis of larger, anionic aluminosilsesquioxanes. The above techniques, however, proved ineffective and new methodologies for the functionalization of hydrido- and chloro-silsesquioxanes were developed. For example, the use of hexamethyldistannoxane allowed the functionalization of H{dollar}sb8{dollar}Si{dollar}sb8{dollar}O{dollar}sb{lcub}12{rcub}{dollar} to give (Me{dollar}sb3{dollar}SnO){dollar}sb8{dollar}Si{dollar}sb8{dollar}O{dollar}sb{lcub}12{rcub}{dollar}. This compound was readily converted to (Me{dollar}sb4{dollar}SbO){dollar}sb8{dollar}Si{dollar}sb8{dollar}O{dollar}sb{lcub}12{rcub}{dollar} using Me{dollar}sb4{dollar}SbOSiMe{dollar}sb3{dollar}. Attempts to synthesize larger anionic aluminosilsesquioxanes frameworks using (Me{dollar}sb4{dollar}SbO){dollar}sb8{dollar}Si{dollar}sb8{dollar}O{dollar}sb{lcub}12{rcub}{dollar} were hindered by side-reactions involving water.; The last phase of this project utilized the octa-functional silsesquioxane (Me{dollar}sb3{dollar}SnO){
机译:铝硅酸盐和沸石在工业上起着催化剂,催化剂载体和离子交换剂的重要作用。尽管最近在光谱技术方面取得了进步,但是许多这些化合物的不溶性使详细研究变得困难。该研究项目的重点是使用多面体低聚倍半硅氧烷,例如不完全缩合的倍半硅氧烷(C {dollar} sb6 {dollar} H {dollar} sb {lcub} 11 {rcub})为这些配合物开发合理的溶液状态模型。 sb7 {dollar} Si {dollar} sb7 {dollar} O {dollar} sb9 {dollar}(OH){dollar} sb3 {dollar}。这些倍半硅氧烷与包含多种沸石(例如Linde 4A分子筛)的二级结构单元(SBU)的表面相似性,以及它们在大多数常见有机溶剂中的溶解度,使其成为用于此目的的理想选择。该项目的初始阶段涉及合成含铝的倍半硅氧烷。这是通过(C {dollar} sb6 {dollar} H {dollar} sb {lcub} 11 {rcub})sb7 {dollar} Si {dollar} sb7 {dollar} O {dollar} sb9 {dollar}( OH){dollar} sb3 {dollar}与AlMe {dollar} sb3 {dollar},Al(OR){dollar} sb3 {dollar}或AlCl {dollar} sb3 {dollar} / Et {dollar} sb3 {dollar} N.二聚体种类((C {dollar} sb6 {dollar} H {dollar} sb {lcub} 11 {rcub})sb7 {dollar} Si {dollar} sb7 {dollar} O {dollar} sb {lcub} 12 {rcub}由该反应产生的{美元} Al){美元} sb2 {美元}容易被路易斯碱如Ph {美元} sb3 {美元} PO裂解。阴离子铝硅倍半氧烷((C {dollar} sb6 {dollar} H {dollar} sb {lcub} 11 {rcub})sb7 {dollar} Si {dollar} sb7 {dollar} O {dollar} sb {lcub} 12 {rcub} {dolal} AlOSiMe {dollar} sb3 {dollar}){dol} sp- {dollar}(SbMe {dollar} sb4 {dollar}){dol} sp + {dollar}可以通过(((C {dollar} sb6 {dollar} H {dollar} sb {lcub} 11 {rcub})sb7 {dollar} Si {dollar} sb7 {dollar} O {dollar} sb {lcub} 12 {rcub} {dollar} Al){dollar} sb2 {dollar}与我{dollar} sb4 {dollar} SbOSiMe {dollar} sb3 {dollar}。 (C {dollar} sb6 {dollar} H {dollar} sb {lcub} 11 {rcub})sb7 {dollar} Si {dollar} sb8 {dollar} O {dollar} sb {lcub} 12 {rcub} {美元}(OSbMe {dollar} sb4 {dollar})允许建造更大的阴离子铝硅倍半氧烷((C {dollar} sb6 {dollar} H {dollar} sb {lcub} 11 {rcub})sb7 {dollar} Si {dollar } sb7 {dollar} O {dollar} sb {lcub} 12 {rcub} {dollar} AlOSi {dollar} sb8 {dollar} O {dollar} sb {lcub} 12 {rcub} {dollar}(C {dollar} sb6 {美元} H {dollar} sb {lcub} 11 {rcub})sb7 {dollar}){dol} sp- {dollar}(SbMe {dollar} sb4 {dollar}){dollar} sp + {dollar}。二价铝硅倍半硅氧烷({dollar} {lcub} {dollar}(C {dollar} sb6 {dollar} H {dollar} sb {lcub} 11 {rcub})sb7 {dollar} Si {dollar} sb7 {dollar} O {dollar } sb {lcub} 12 {rcub} {dollar} Al {dollar} {rcub} sb2 {dollar} O){dollar} sp {lcub} 2- {rcub} {dollar}(SbMe {dollar} sb4 {dollar})还合成了{dollar} sp + {dollar}(PMe {dollar} sb4 {dollar}){dollar} sp + {dollar}。该项目的第二阶段涉及将上述开发的技术扩展至更大的阴离子铝硅倍半氧烷的合成。然而,上述技术被证明是无效的,并且开发了用于氢化和倍半硅氧烷的功能化的新方法。例如,使用六甲基二氧六环可以使H {dols} sb8 {dollar} Si {dollar} sb8 {dollar} O {dollar} sb {lcub} 12 {rcub} {dollar}的官能化得到(Me {dollar} sb3 {dollar} SnO){dollar} sb8 {dollar} Si {dollar} sb8 {dollar} O {dollar} sb {lcub} 12 {rcub} {dollar}。使用Me {},该化合物可轻松转换为(Me {dollar} sb4 {dollar} SbO){dol} sb8 {dollar} Si {dollar} sb8 {dollar} O {dollar} sb {lcub} 12 {rcub} {dollar}美元} sb4 {dollar} SbOSiMe {dollar} sb3 {dollar}。尝试使用(Me {dollar} sb4 {dollar} SbO){dollar} sb8 {dollar} Si {dollar} sb8 {dollar} O {dollar} sb {lcub} 12 {rcub} {dollar}来合成更大的阴离子铝硅倍半硅氧烷骨架受涉及水的副反应阻碍;该项目的最后阶段使用了八功能倍半硅氧烷(Me {dollar} sb3 {dollar} SnO){

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号