首页> 外文学位 >Scaling ecosystem models from watersheds to regions: Tradeoffs between model complexity and accuracy.
【24h】

Scaling ecosystem models from watersheds to regions: Tradeoffs between model complexity and accuracy.

机译:从流域到区域扩展生态系统模型:在模型复杂性和准确性之间进行权衡。

获取原文
获取原文并翻译 | 示例

摘要

Large-scale estimates of net primary production (NPP) derived from ecosystem models are based on several assumptions whose impact on NPP estimates are largely unknown. In this dissertation, I examine how estimates of NPP are affected by the use of several key assumptions associated with scaling ecosystem models from watersheds to regions.; Large-scale ecosystem models assume that canopy photosynthetic properties, such as specific leaf area (SLA) and leaf nitrogen (N), are constant within a biome. However, ignoring intra-biome variations of SLA and leaf N can lead to errors in simulated NPP ranging from 30-60%. SLA is closely related to LAI in both coniferous (R{dollar}sp2{dollar} = 0.93) and Eucalyptus (R{dollar}sp2{dollar} = 0.78) forests. Leaf N per unit area is highly correlated to canopy transmittance (R{dollar}sp2{dollar} = 0.94) in conifer forests. Because SLA and leaf N are both closely related to LAI, satellite images of LAI can be used to estimate the variability in canopy properties across biomes.; Models which estimate NPP based on the spatial distribution of absorbed solar radiation (APAR) are potentially useful for making unbiased, high-resolution estimates of NPP at large scales. An APAR model relying on elevation to predict the dry matter yield of energy {dollar}(epsilon){dollar} can accurately predict the spatial variations in NPP simulated using a computationally-intensive ecosystem model (R{dollar}sp2{dollar} = 0.90). The APAR model proved to be 36 times more computationally efficient than the ecosystem model, allowing unbiased, high-resolution estimates of NPP over large spatial scales.; Global-scale ecosystem models utilize datasets with cell sizes of {dollar}1spcirctimes1spcirc,{dollar} within which sub-cell land surface variations are averaged. The landscape averaging associated with these datasets have an unknown impact on estimates of NPP. Averaging complex landscapes can contribute error to NPP estimates, depending upon: (a) the temporal resolution for which NPP is being simulated, and (b) the complexity of the land surface relative to the size of the cell or partition being used to represent that land surface. Averaging sub-grid cell landscape variations can result in as much as a 30% error in NPP estimates. Careful partitioning of complex landscapes can greatly reduce the magnitude of this error.
机译:从生态系统模型得出的净初级生产力(NPP)的大规模估计是基于几个假设,这些假设对NPP估计的影响在很大程度上是未知的。在本文中,我研究了使用与从流域到区域的生态系统模型扩展相关的几个关键假设如何影响NPP的估计。大型生态系统模型假设,在生物群落内,冠层的光合特性(例如比叶面积(SLA)和叶氮(N))是恒定的。但是,忽略SLA和叶N的生物组内变异会导致模拟NPP的误差在30%至60%之间。在针叶林(R {dollar} sp2 {dollar} = 0.93)和桉树(R {dollar} sp2 {dollar} = 0.78)的森林中,SLA与LAI密切相关。针叶林中每单位面积的叶N与冠层透射率高度相关(R {dollar} sp2 {dollar} = 0.94)。因为SLA和叶N都与LAI密切相关,所以LAI的卫星图像可用于估计整个生物群落的冠层特性的变异性。基于吸收的太阳辐射的空间分布(APAR)估算NPP的模型对于大规模进行NPP的无偏,高分辨率估算可能很有用。依靠海拔高度来预测能量干物质产量(美元)(ε){美元}的APAR模型可以准确地预测使用计算密集型生态系统模型模拟的NPP的空间变化(R {dollar} sp2 {dollar} = 0.90 )。事实证明,APAR模型的计算效率是生态系统模型的36倍,可以在较大的空间尺度上对NPP进行无偏的高分辨率估计。全球规模的生态系统模型利用的单元格大小为{dollar} 1spcirctimes1spcirc {dollar}的数据集对子单元土地表面变化进行平均。与这些数据集相关的景观平均值对NPP的估计值产生未知的影响。对复杂景观进行平均可导致NPP估计误差,具体取决于:(a)模拟NPP的时间分辨率,以及(b)相对于用来表示该区域的像元或分区大小的地表复杂度陆地表面。平均亚网格单元格格局变化可能导致NPP估计误差高达30%。仔细划分复杂的景观可以大大减少此错误的程度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号