首页> 外文学位 >Chemical synthesis of size- and shape-controlled intermetaliic and metal nanocrystals.
【24h】

Chemical synthesis of size- and shape-controlled intermetaliic and metal nanocrystals.

机译:尺寸和形状受控的金属间和金属纳米晶体的化学合成。

获取原文
获取原文并翻译 | 示例

摘要

The interest in using nanocrystalline inorganic solids for nanoscale devices and technologies has fueled a tremendous research effort for developing syntheses of inorganic nanocrystals. Even though much progress has been made for the development of synthetic approaches, synthetic methods to generate size- and shape-controlled nanocrystalline materials are still challenging, particularly for multi-metal and metal systems that have been less explored due to the lack of robust synthetic approaches. This dissertation presents robust and facile solution based approaches to synthesize size- and shape-controlled intermetallic and metal nanocrystals.;We have been exploring the concept of chemical conversion for synthesizing a variety of nanomaterials with size- and shape-control. In particular, this approach has shown to be an effective chemical route for synthesizing shape-and size-controlled intermetallic nanocrystals. It has been known that size-and shape-controlled intermetallic compounds are not easily attainable since intermetallic compounds normally consist of elements possessing notably different reduction potentials, reduction kinetics, and reactivity. This chemical conversion strategy utilizes a single metal as a reactive template for synthesizing more complex nanomaterials. We have shown that beta-Sn nanocrystals can chemically transform into size- and shape-controlled M-Sn intermetallic nanocrystals. This chemical conversion method also affords compounds that can be hard to obtain by traditional solid state synthetic methods. We have also established general and predictive guidelines for accessing dense and hollow single crystal nanorods in M-Sn systems. Through this study, we have realized that reaction temperature plays a vital role in maintaining the morphology of the beta-Sn nanorod templates in the products.;For the synthesis of a variety of nanomaterials by the exploitation of the established chemical conversion strategy, robust and general chemical approaches have been developed for the synthesis of shape-controlled In nanoparticles by understanding reduction kinetics. Interestingly, metal precursors that have negative reduction potential vs standard hydrogen electrode have previously been synthesized by only harsh chemical and physical methods (high reaction temperatures and strong reducing agents), which can be inadequate for yielding precisely shape-controlled nanoparticles. We have shown a simple and robust kinetically controlled borohydride reduction process for synthesizing shape-controlled In nanocrystals at room temperature. By controlling the reduction rates via the rate of addition of sodium borohydride solution and controlling several reaction parameters, including reaction solvents, additives, solvents for sodium borohydride, and alcohol solutions containing metal precursors in the presence of poly(vinyl pyrrolidone), indium nanoparticles are formed that include shapes of high aspect ratio nanowires, uniform octahedra, truncated octahedra, decahedra, triangles, spheres, and star-like shapes.;We have shown that a simple kinetically controlled reduction process can also be applied to the synthesis of size- and shape-controlled Ge nanocrystals. Again, representative chemical and physical approaches have been previously developed using harsh reaction conditions (high temperatures, high pressures, and strong reducing agents). The kinetically controlled reduction process by sodium borohydride at room temperature leads to the formation of spherical Ge nanocrystals with high monodispersity, as well as cubic shape. By varying concentration of metal precursors and reaction solvents, different sizes of germanium nanocrystals were obtained.
机译:对于将纳米晶体无机固体用于纳米级装置和技术的兴趣推动了开发无机纳米晶体合成的巨大研究努力。尽管在合成方法的开发方面已取得了很大进展,但生成尺寸和形状可控的纳米晶体材料的合成方法仍然具有挑战性,特别是对于由于缺乏坚固的合成方法而很少探索的多金属和金属系统方法。本文提出了一种基于鲁棒性和简便性的基于溶液的方法来合成尺寸和形状受控的金属间和金属纳米晶体。我们一直在探索化学转化的概念,以合成具有尺寸和形状控制的多种纳米材料。特别地,该方法已证明是用于合成形状和尺寸受控的金属间纳米晶体的有效化学途径。众所周知,由于金属间化合物通常由具有明显不同的还原电势,还原动力学和反应性的元素组成,因此难以获得尺寸和形状受控的金属间化合物。这种化学转化策略利用单一金属作为反应模板来合成更复杂的纳米材料。我们已经表明,β-Sn纳米晶体可以化学转化为尺寸和形状受控的M-Sn金属间纳米晶体。这种化学转化方法还提供了难以通过传统固态合成方法获得的化合物。我们还建立了访问M-Sn系统中密集和中空单晶纳米棒的一般和预测性指南。通过这项研究,我们认识到反应温度在维持产品中β-Sn纳米棒模板的形态方面起着至关重要的作用。;通过利用既定的化学转化策略来合成各种纳米材料通过了解还原动力学,已经开发了用于合成形状受控的In纳米粒子的通用化学方法。有趣的是,以前仅通过苛刻的化学和物理方法(高反应温度和强还原剂)合成了相对于标准氢电极具有负还原电势的金属前体,这可能不足以产生形状可控的纳米粒子。我们已经显示了一种简单而强大的动力学控制的硼氢化物还原过程,用于在室温下合成形状受控的In纳米晶体。通过经由硼氢化钠溶液的添加速率控制还原速率并控制几个反应参数,包括反应溶剂,添加剂,硼氢化钠溶剂以及在聚乙烯吡咯烷酮存在下的含有金属前体的醇溶液,铟纳米粒子是包括高长宽比纳米线,均匀的八面体,截短的八面体,十面体,三角形,球形和星形的形状;我们已经证明,简单的动力学控制的还原过程也可以用于合成尺寸和形状受控的Ge纳米晶体。同样,先前已经使用苛刻的反应条件(高温,高压和强还原剂)开发了代表性的化学和物理方法。室温下通过硼氢化钠进行的动力学控制的还原过程导致形成具有高单分散性和立方形状的球形Ge纳米晶体。通过改变金属前体和反应溶剂的浓度,获得了不同尺寸的锗纳米晶体。

著录项

  • 作者

    Chou, Nam Hawn.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Chemistry Inorganic.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号