首页> 外文学位 >Nonlinear analysis of the Rayleigh-Taylor instability of viscous finite fluid layers.
【24h】

Nonlinear analysis of the Rayleigh-Taylor instability of viscous finite fluid layers.

机译:粘性有限流体层的瑞利-泰勒不稳定性的非线性分析。

获取原文
获取原文并翻译 | 示例

摘要

The nonlinear evolution of Rayleigh-Taylor instability of plane fluid layers is investigated based on an extensive numerical study. Full Navier-Stokes equations and exact boundary equations are solved simultaneously for precise prediction of this phenomenon. An accurate flux line segment model (FLAIR) for fluid surface advection is employed for the interface reconstruction. An accurate scheme for the implementation of the boundary equations at the free surface is presented. The instability is characterized by three stages of development which are defined by monitoring the competition of the bubble and spike growth. This competition is responsible for the development of different spike and bubble morphologies and is decided based on geometrical factors, mainly the amplitude and wavelength of the initial perturbation, and on the fluid properties, mainly viscosity and surface tension. The cutoff wavenumbers and the most unstable wavenumbers are identified numerically based on the effect of the surface tension dimensionless parameter defined as Weber number. The effect of Reynolds number on the growth rate of instability and the role of viscosity in dragging the development of instability are also investigated. Curved layers are found to be more unstable than plane fluid layers. Finally, the problem of liquid drops microexplosion is investigated in view of the hydrodynamics instability associated with the disruptive phenomenon. The size of the internal phase, the Weber number and the characteristics of the surface perturbation are shown to significantly affect the breakup time of the liquid drop.
机译:在广泛的数值研究基础上,研究了平面流体层瑞利-泰勒不稳定性的非线性演化。同时求解完整的Navier-Stokes方程和精确的边界方程,以精确预测此现象。用于流体表面平流的精确通量线段模型(FLAIR)用于界面重建。提出了一种在自由表面上执行边界方程的精确方案。这种不稳定性的特征在于发展的三个阶段,这些阶段通过监测泡沫的竞争和峰值增长来确定。这种竞争是导致形成不同的尖峰和气泡形态的原因,它是根据几何因素(主要是初始扰动的幅度和波长)以及流体特性(主要是粘度和表面张力)决定的。根据定义为韦伯数的表面张力无量纲参数的影响,以数字方式确定截止波数和最不稳定的波数。还研究了雷诺数对不稳定性生长速率的影响以及粘度在拖延不稳定性发展中的作用。发现弯曲层比平面流体层更不稳定。最后,鉴于与破坏现象相关的流体动力学不稳定性,研究了液滴微爆炸的问题。内相的大小,韦伯数和表面扰动的特性显示出显着影响液滴的破裂时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号