首页> 外文学位 >Enhancement of pool boiling heat transfer in highly wetting dielectric liquids.
【24h】

Enhancement of pool boiling heat transfer in highly wetting dielectric liquids.

机译:高度润湿的介电液体中池沸腾传热的增强。

获取原文
获取原文并翻译 | 示例

摘要

Advanced computational capability requires increased electronic signal speed. This requirement is forcing the electronics industry to design miniaturized, highly integrated, high-density packaging of electronic components, all of which lead to increased component junction temperatures and energy dissipation rates at the chip, module, and system levels. Chip power density is projected to exceed 100W/cm;The current research is divided into three phases. The work conducted in Phases 1 and 2 focuses on the enhancement of pool boiling heat transfer via surface treatments and "gassy" sub-cooling. In Phase 3, quantification of the bubble departure parameters as a function of heat flux is investigated.;Four benign methods of generating surface micro-structures which provide heat transfer enhancement are developed and over twenty enhanced surfaces are investigated. Pool boiling results from enhanced, horizontally oriented, rectangular surfaces immersed in saturated FC-72, indicate wall superheat reductions (70 to 85%) and up to a 109% increase in the critical heat flux. In Phase 2, sub-cooling is used in conjunction with surface treatments to provide further enhancement. The effects of sub-cooling and dissolved gas concentration on wall superheats and the critical heat flux are quantified. Two surface micro-structures are applied to a silicon test chip and tested at saturated and sub-cooled conditions. Heat dissipation rates of ;Understanding the heat transfer mechanisms involved during nucleate boiling requires quantitative knowledge of the bubble departure size and frequency. A technique is developed using Laser Doppler Anemometry (LDA) which measures the instantaneous and time-averaged single-site bubble departure frequency. Bubble size, departure frequency, and rise velocity from an 80
机译:先进的计算能力需要提高电子信号速度。这项要求迫使电子行业设计小型化,高度集成,高密度的电子组件封装,所有这些都会导致组件结温度和芯片,模块以及系统级的能量耗散率提高。芯片功率密度预计超过100W / cm;目前的研究分为三个阶段。在阶段1和阶段2中进行的工作着重于通过表面处理和“气体”过冷来增强池沸腾传热。在第3阶段,研究了气泡离开参数随热通量的量化。发展了四种产生热传递增强作用的表面微结构的良性方法,并研究了二十多种增强表面。浸在饱和的FC-72中的增强的水平定向矩形表面会导致池沸腾,表明壁过热降低(70%至85%),临界热通量增加高达109%。在阶段2中,将过冷与表面处理结合使用以提供进一步的增强。量化了过冷和溶解气体浓度对壁过热和临界热通量的影响。将两个表面微结构应用于硅测试芯片,并在饱和和过冷条件下进行测试。的散热率;了解成核沸腾过程中涉及的传热机制,需要对气泡离开的大小和频率的定量了解。使用激光多普勒风速仪(LDA)开发了一种技术,该技术可测量瞬时和时间平均的单点气泡离开频率。气泡大小,离开频率和上升速度(从80开始)

著录项

  • 作者

    O'Connor, John Patrick.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 323 p.
  • 总页数 323
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:49:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号