首页> 外文学位 >Magnetic bearing system design for enhanced stability.
【24h】

Magnetic bearing system design for enhanced stability.

机译:电磁轴承系统设计提高了稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Magnetic bearings are essential components in the flywheel energy storage system because of their low friction loss and long life cycles. The magnetic bearings developed in past experiments were based on a linear model and failed to magnetically suspend the rotating flywheel at high speeds. Since the bearing operation is affected by different factors, including disturbances, flywheel, mechanical structure, control system, power electronics, and magnetic materials, there is a need for a system design to achieve stable bearing operations over a various range of speeds and design parameters.; The objective of this research is to principally analyze the magnetic bearing system for nonlinear effects in order to increase the region of stability, as determined by high speed and large air gap control. This is achieved by four tasks: (1) physical modeling, design, prototyping, and testing of a magnetically suspended flywheel energy storage system, (2) identification of problems that limits performance and their corresponding solutions, (3) development of a design methodology for magnetic bearings, and (4) design of an optimal controller for future high speed applications.; The physical modeling of the magnetic bearing system takes into consideration disturbances, gyroscopic motion, physical limitations, and other uncertainties of the system. The magnetic bearing design has important parameters such as stiffness, load capacity, linear operating range, magnetic materials, and power electronics. The design not only meets design constraints on these parameters but also maximizes the stable displacement range, which directly affects the stiffness, load capacity, and operating range of the bearings. An optimum controller design can accommodate disturbances and physical uncertainties with good tracking and disturbance rejection at low frequency and robustness at high frequency.; A prototype of the flywheel energy storage system was built with new magnetic bearings, adjustable stiffness and damping controllers, and improved power electronics. The system was tested at a maximum speed of 20,000 RPM with a total stored energy of 15.9 WH. The principal limitation was motor torque and magnetic core losses. The magnetic bearing achieved a DN number greater than 2.1 million (mm-RPM), which exceeds the capability of most mechanical bearings. Theoretical and experimental studies have identified the major power loss of the system to be caused by the eddy currents in non-laminated magnetic materials of the bearings. This power loss can be minimized by using a high resistivity laminated magnetic material.
机译:电磁轴承是飞轮储能系统中不可或缺的组件,因为它们的摩擦损耗小且使用寿命长。在过去的实验中开发的磁性轴承是基于线性模型的,并且未能使旋转的飞轮高速磁性悬浮。由于轴承的运行受各种因素的影响,包括干扰,飞轮,机械结构,控制系统,电力电子和磁性材料,因此需要一种系统设计,以在各种速度和设计参数范围内实现稳定的轴承运行。;这项研究的目的是主要分析磁性轴承系统的非线性影响,以增加由高速和大气隙控制所确定的稳定性区域。这可以通过四个任务来实现:(1)磁悬浮飞轮储能系统的物理建模,设计,原型设计和测试,(2)识别限制性能的问题及其相应的解决方案,(3)开发设计方法(4)为未来的高速应用设计最佳控制器。磁轴承系统的物理建模考虑了系统的干扰,陀螺运动,物理限制以及其他不确定性。磁性轴承设计具有重要的参数,例如刚度,负载能力,线性工作范围,磁性材料和电力电子设备。设计不仅满足这些参数的设计约束,而且最大化了稳定的位移范围,这直接影响轴承的刚度,负载能力和工作范围。最佳的控制器设计可以适应干扰和物理不确定性,并在低频时具有良好的跟踪和干扰抑制能力,在高频时具有鲁棒性。飞轮储能系统的原型由新的磁性轴承,可调节的刚度和阻尼控制器以及改进的电力电子设备组成。该系统以最高20,000 RPM的速度进行了测试,总存储能量为15.9 WH。主要限制是电动机转矩和磁芯损耗。磁性轴承的DN值大于210万(mm-RPM),超过了大多数机械轴承的能力。理论和实验研究已经确定了该系统的主要功率损耗是由轴承的非层压磁性材料中的涡流引起的。通过使用高电阻率的层叠磁性材料,可以使该功率损失最小化。

著录项

  • 作者

    Pang, Da-Chen.;

  • 作者单位

    University of Maryland College Park.;

  • 授予单位 University of Maryland College Park.;
  • 学科 Engineering Mechanical.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 p.478
  • 总页数 315
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号