首页> 外文学位 >Microstructural and constitutive behavior of superplastic titanium alloy (titanium)-(6 aluminum)-(4 vanadium).
【24h】

Microstructural and constitutive behavior of superplastic titanium alloy (titanium)-(6 aluminum)-(4 vanadium).

机译:超塑性钛合金(钛)-(6铝)-(4钒)的组织和本构行为。

获取原文
获取原文并翻译 | 示例

摘要

Microduplex titanium alloy Ti-6Al-4V displays superplastic deformation under specific conditions of temperature ({dollar}approx{dollar}900{dollar}spcirc{dollar}C), microstructure ({dollar}approx{dollar}5{dollar}mu{dollar}m) and strain rate({dollar}approx{dollar}10{dollar}sp{lcub}-3{rcub}{dollar}/s). Microstructural effects on superplastic behavior center on grain growth via static and deformation enhanced mechanisms. In order to model a part forming process, a constitutive relation is required which includes microstructural effects and is valid over the appropriate range of temperatures and strain rates. After the superplastic deformation is modeled, various numerical techniques can be used to optimize process parameters (e.g., reduce forming time under uniform deformation constraint) by applying instability analysis.; This study models superplastic deformation and forming of Ti-6-4. The investigation was conducted in two stages. First, the microstructural evolution and flow stress behavior are quantified under constant (average) strain rate conditions. This data is used with superplastic and dislocation creep activation energies to generate a constitutive relation relating the strain rate to the applied stress. Experimental data is obtained over a temperature range of 875 to 925{dollar}spcirc{dollar}C, at strain rates from 10{dollar}sp{lcub}-4{rcub}{dollar} to 10{dollar}sp{lcub}-2{rcub}{dollar}/s to determine the constitutive relation parameters and check the validity of the relation. The constitutive relation can then be used to predict corresponding behavior under other (variable strain rate) deformation conditions.; In the second discussion, concepts for optimizing deformation paths were explored through numerical modeling and examined experimentally. It is shown that there is little opportunity to delay the onset of non-uniform strain in the tensile tests due to non-uniform stress states, but that subsequent necking can be limited by control of the post-uniform deformation process. A concept is proposed and verified experimentally for designing a variable strain rate path suitable for minimizing non-uniform deformation while deforming as rapidly as possible.
机译:微双钛合金Ti-6Al-4V在特定温度条件下({dollar} approx {dollar} 900 {dollar} spcirc {dollar} C),微观结构({dollar} approx {dollar} 5 {dollar} mu {美元} m)和应变率({dollar}大约{dollar} 10 {dollar} sp {lcub} -3 {rcub} {dollar} / s)。通过超静力学和变形增强机制,对超塑性行为的微观影响主要集中在晶粒的生长上。为了对零件成型过程建模,需要本构关系,包括微观结构效应,并且在适当的温度和应变速率范围内有效。在对超塑性变形建模之后,可以通过应用不稳定性分析,使用各种数值技术来优化工艺参数(例如,在均匀变形约束下减少成型时间)。本研究模拟了Ti-6-4的超塑性变形和形成。调查分两个阶段进行。首先,在恒定(平均)应变率条件下对微观结构的演变和流动应力行为进行了定量。该数据与超塑性和位错蠕变活化能一起使用,以生成将应变率与施加应力相关的本构关系。实验温度是在875至925摄氏度(美元)的温度范围内获得的,应变速率为10英镑(spublc-4)的{rcub}到10英镑(spublc}的10% -2 {rcub} {dollar} / s来确定本构关系参数并检查关系的有效性。然后,本构关系可用于预测其他(可变应变率)变形条件下的相应行为。在第二次讨论中,通过数值建模探索了优化变形路径的​​概念,并进行了实验检验。结果表明,由于不均匀的应力状态,几乎没有机会延迟拉伸试验中不均匀应变的发生,但是随后的颈缩可以通过控制均匀后变形过程来限制。提出并通过实验验证了用于设计可变应变率路径的概念,该路径适合于使不均匀变形最小化,同时尽可能快地变形。

著录项

  • 作者

    Johnson, Craig Harold.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号