首页> 外文学位 >Controlling thermal deformation and stresses in laminated structures.
【24h】

Controlling thermal deformation and stresses in laminated structures.

机译:控制层压结构中的热变形和应力。

获取原文
获取原文并翻译 | 示例

摘要

Under a through-thickness temperature variation, thin structural elements such as beams, plates and shells usually react by producing deformations composed of (in-plane) expansion and (out-of-plane) bending. These deformations can distort the structure and cause stresses when its parts expand unequally. By symmetrically laminating laminae possessing a negative axial coefficient of thermal expansion (CTE) with laminae having a positive CTE, these deformations can be minimized or matching with the deformation of other components.; A three-layer beam or plate is demonstrated which can eliminate thermal curvature while lowering in-plane thermal expansion or can match a desired in-plane expansion (including zero CTE) while lowering thermal curvature. A five-layer beam or plate is demonstrated which can eliminate thermal curvature and match a desired in-plane expansion (within limits). Solutions are given in terms of layer thickness ratio. The results are independent of the actual temperatures, within the limitation of steady-state heat transfer and constant material properties. These design conditions can also be used to control or tailor the thermally induced stresses within the laminated structure.; An additional design parameter is the fiber volume fraction (V{dollar}sb{lcub}rm f{rcub}).{dollar} For a three-layer beam of (composite/metal/composite), the thickness ratio to meet thermal curvature stable (TCS) design requirement and the CTE of the beam are relatively insensitive to V{dollar}sb{lcub}rm f{rcub}{dollar} at higher V{dollar}sb{lcub}rm f{rcub}.{dollar} At lower V{dollar}sb{lcub}rm f{rcub},{dollar} the in-plane thermal expansion can be further reduced at the expanse of increased composite layer thickness.; Compared to an homogeneous (metal which was used in the laminated structure) structural element with identical flexural stiffness or compliance, the layered structure has the advantage of lower thickness and weight, higher in-plane stiffness, fundamental vibration frequency and critical thermal buckling temperature. When material properties are considered to be functions of temperature, a layered structure with zero thermal curvature or matched in-plane expansion may still be constructed. The solution using temperature-dependent properties is compared to that for constant properties for a three layer system. The penalty for assuming constant properties is assessed. The time-dependent temperature profile is also discussed.; The results of a sensitivity study show that variations in the thermal conductivity ratios have very little effect on the effective CTE of the laminates; they have little effect on the thermal curvature of a five-layer laminate and three-layer laminate with a negative CTE center layer. For three-layer laminates, the thermal curvature is more sensitive to variations in the layer thickness ratio than to variation in the property ratios. For five-layer laminates, the in-plane expansion is seen more sensitive to variations in the relative thickness and properties of the second layer to the third layer than that of the first layer to the third layer. For the example laminates, it is seen that those with a positive CTE center layer have a little better control of the thermal deformation. It is also observed that the thermal deformation of the laminated plates are less sensitive to uncertainty of the laminae properties and thickness to that of the beams.
机译:在整个厚度的温度变化下,诸如梁,板和壳之类的薄结构元件通常会通过产生由(面内)膨胀和(面外)弯曲组成的变形而发生反应。这些变形会使结构变形,并在其零件不均匀扩展时引起应力。通过将具有负轴向热膨胀系数(CTE)的薄片与具有正CTE的薄片对称地层压,可以使这些变形最小化或与其他组件的变形相匹配。演示了三层梁或板,它们可以消除热曲率,同时降低面内热膨胀,或者可以匹配所需的面内膨胀(包括零CTE),同时降低热曲率。演示了一种五层梁或板,可以消除热曲率并匹配所需的面内扩展(在限制范围内)。根据层厚比给出解决方案。结果与实际温度无关,在稳态传热和恒定材料性能的限制内。这些设计条件也可以用来控制或调整层压结构内的热应力。另一个设计参数是纤维体积分数(V {dollar} sb {lcub} rm f {rcub})。{dollar}对于三层(复合材料/金属/复合材料)光束,其厚度比满足热曲率稳定(TCS)设计要求和光束的CTE在较高的V {dolb} sb {lcub} rm f {rcub}时对V {dollar} sb {lcub} rm f {rcub} {dollar}相对不敏感。{dollar }在较低的V {dolb} rm f {rcub}下,{{dollar}面内热膨胀可以随着复合层厚度​​的增加而进一步减小。与具有相同的弯曲刚度或柔度的均质(用于层压结构的金属)结构元件相比,该层状结构的优点是厚度和重量更轻,面内刚度更高,基本振动频率和临界热屈曲温度。当材料特性被认为是温度的函数时,仍然可以构造具有零热曲率或匹配的面内膨胀的层状结构。将使用温度相关特性的解决方案与三层系统恒定特性的解决方案进行比较。评估假定恒定特性的代价。还讨论了随时间变化的温度曲线。敏感性研究的结果表明,热导率的变化对层压板的有效CTE影响很小。它们对具有负CTE中心层的五层层压板和三层层压板的热曲率影响很小。对于三层层压板,热曲率对层厚比的变化比对性能比的变化更敏感。对于五层层压板,与第一层至第三层的相对厚度和性能变化相比,平面内膨胀对第二层至第三层的相对厚度和性能的变化更为敏感。对于示例层压板,可以看出具有正CTE中心层的层压板对热变形的控制更好。还观察到,层压板的热变形对薄片特性的不确定性以及与梁的厚度相比不那么敏感。

著录项

  • 作者

    Wang, Jianzhong.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Mechanical.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 1994
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号