首页> 外文学位 >Two types of protein salt bridges studied by quantum calculation.
【24h】

Two types of protein salt bridges studied by quantum calculation.

机译:通过量子计算研究了两种类型的蛋白质盐桥。

获取原文
获取原文并翻译 | 示例

摘要

Two types of protein salt bridges in an aqueous environment, the arginine-acid salt bridge and the lysine-acid salt bridge, are studied here. The former is modeled by propionic acid and ethylguanidine, the latter by propionic acid and propyl amine. Both have been investigated by quantum calculations for the purpose of obtaining improved salt bridge potentials in an aqueous environment with constraints on the distances between the two functional groups, which are defined as the bridge lengths in this report, designed for applications to molecular dynamics simulations of ion channels. For the arginine-acid salt bridge, we perform optimization calculations on 13 molecular clusters corresponding to the salt bridge with 0 to 12 water molecules. For the lysine-acid salt bridge, we perform optimization calculations on 2 molecular clusters for the salt bridge with 0 or 1 water molecule. To each of the model systems, after obtaining its optimized geometry, we slowly vary the bridge lengths and bridge angles in three dimensions, and subsequently we perform COSMO, frequency and NBO calculations on the contracted and expanded model systems. COSMO calculations give the dielectric constant dependence, and the frequency provides the thermodynamic properties of the system while the NBO provides the electronic distributions and bonding information. We found: (1) there is a fill-in mechanism for water molecules to enter into the salt bridge systems; such a fill-in order may have periodicity in energy, as a function of number of water molecules. (2) we show that the salt bridge systems have both hydrophilic and hydrophobic properties; (3) we look into the proton ionization process from several new aspects in terms of comparison between potentials in two different salt bridge systems and the rates of Wiberg bond order change; (4) we have an in-depth look at effects that can cause large variations to system potentials, and we take note of effects that resulted from environments of limited amounts of local waters and that may have been missed by classical treatments; (5) we look into a new aspect in the applications of Wiberg bond order that are closely associated with the electron density in predicting the formation and disruption of bonding in the systems; (6) in regard to applications to simulations of ion channels, we discuss a possible method to formulate system potentials in specific environments.
机译:本文研究了在水环境中两种类型的蛋白质盐桥,即精氨酸盐桥和赖氨酸盐桥。前者以丙酸和乙基胍为模型,后者以丙酸和丙胺为模型。二者均已通过量子计算进行了研究,目的是在水性环境中获得改善的盐桥电势,并限制两个官能团之间的距离(在本报告中定义为桥长),旨在用于分子动力学模拟。离子通道。对于精氨酸盐桥,我们对与0到12个水分子的盐桥相对应的13个分子簇进行了优化计算。对于赖氨酸-酸式盐桥,我们对2个分子簇针对0或1个水分子的盐桥进行了优化计算。对于每个模型系统,在获得最优化的几何形状之后,我们会在三个维度上缓慢改变桥的长度和桥角度,然后对收缩和扩展的模型系统执行COSMO,频率和NBO计算。 COSMO计算给出了介电常数依赖性,频率提供了系统的热力学性质,而NBO提供了电子分布和键合信息。我们发现:(1)水分子进入盐桥系统存在一种填充机制;这样的填充顺序可以具有能量周期性,其是水分子数目的函数。 (2)我们表明盐桥体系既具有亲水性又具有疏水性。 (3)我们从两个不同盐桥系统中的电势之间的比较以及Wiberg键序变化率的角度出发,从几个新方面研究了质子电离过程; (4)我们深入研究了可能导致系统电势发生较大变化的影响,并注意到了由于局部水域有限而导致的影响,而经典处理可能会忽略这些影响; (5)我们在Wiberg键序的应用中研究了一个新的方面,它与电子密度密切相关,可预测系统中键的形成和破坏; (6)关于离子通道模拟的应用,我们讨论了一种在特定环境中公式化系统电势的可能方法。

著录项

  • 作者

    Liao, Sing.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 261 p.
  • 总页数 261
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号