首页> 外文学位 >Numerical investigation of type II non-Newtonian de/anti-icing fluid effects on take-off performance for general aviation aircraft.
【24h】

Numerical investigation of type II non-Newtonian de/anti-icing fluid effects on take-off performance for general aviation aircraft.

机译:II型非牛顿除冰/除冰液对通用航空飞机起飞性能影响的数值研究。

获取原文
获取原文并翻译 | 示例

摘要

Ground icing, while preventable with glycol based freezing point depressant fluids, accounts for nearly 40-50 civil accidents a year according to one account. More viscous than Type I fluids, Type II fluids are inherently non-linear in their shear stress-rate of strain relationship having smaller relative viscosity at higher shear rates. The non-linearity makes properly scaled wind-tunnel testing difficult and computational methods are employed in this study to look at the aerodynamic effects of the deicing fluid on global performance during typical take-off maneuvers for general aviation. The method is tested on a two-dimensional NACA 0012 airfoil under typical take-off simulation parameters.;A modified PANEL method arrives at potential flow solutions which account for the accelerating freestream, rotation maneuver, and shed vorticity while time-dependent Boundary Layer equations are solved using an implicit finite difference scheme. Viscid-inviscid interaction is accomplished in an inverse method through the specification of normal velocities induced on each panel during potential flow calculations to account for displacement thickness effects. Deicing fluid motion is driven by shear stresses at the interface of the fluid and gas-dynamic boundary layer and pressure gradients based on the outer flow solution. Slip velocities and shear stresses are then matched at the interface to insure kinematic and dynamic continuity. The displacement thickness effect of the deicing fluid is accounted for in the viscid-inviscid interaction.;The deicing fluid is assumed Newtonian in this study and exhibits a fluid bucking effect which may point to reasons for reported losses in lift. The large shear stresses toward the leading edge drag the fluid to the center of the airfoil while large pressure gradients in the back push the fluid to the center. The buckling phenomena is shown to be brought on by (1) increased fluid viscosity, (2) deeper initial depths of deicing fluid and (3) higher rotation speeds where shear stresses and pressure gradients are larger. In simulations which did not exhibit fluid buckling, the effect on maximum lift coefficient was found to be minimal. The current programming is not equipped to handle this aspect of fluid stability and remains an issue for further investigation.
机译:据一个报告说,地面结冰虽然可以用乙二醇基冰点抑制剂液体预防,但每年却导致近40-50起民事事故。类型II的流体比类型I的流体粘性更大,其固有的非线性是它们的应变关系的剪切应力-应变关系,在较高的剪切速率下具有较小的相对粘度。非线性使适当规模的风洞测试变得困难,并且在这项研究中采用了计算方法来研究除冰液在通用航空典型起飞演习中对整体性能的气动影响。该方法在典型起飞模拟参数下在二维NACA 0012翼型上进行了测试;一种改进的PANEL方法得出了潜在的流动解,该解考虑了随时间变化的边界层方程式的加速自由流,旋转操纵和脱落涡度使用隐式有限差分方案求解。通过在潜在流量计算期间考虑到位移厚度效应的过程中,在每个面板上感应的法向速度的规范,以逆向方法完成了粘性-无粘性相互作用。除冰运动是由流体和气体动力边界层界面处的剪应力以及基于外部流动解决方案的压力梯度驱动的。然后在界面处将滑移速度和切应力匹配,以确保运动学和动态连续性。除冰液的位移厚度效应是由粘稠相互作用引起的。在本研究中,除冰液被认为是牛顿型的,并表现出流体的屈曲效应,这可能是报道升力损失的原因。朝向前缘的较大剪切应力将流体拖至翼型的中心,而背面的较大压力梯度将流体推至中心。屈曲现象是由(1)流体粘度增加,(2)除冰流体的初始深度更深和(3)剪切应力和压力梯度较大的较高转速引起的。在不表现出流体屈曲的模拟中,发现对最大升力系数的影响最小。当前的程序尚未配备来处理流体稳定性的这一方面,并​​且仍然是需要进一步研究的问题。

著录项

  • 作者

    Cronin, Dennis James.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Mechanics.;Aerospace engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号