首页> 外文学位 >Stochastic optimal control under randomly varying distributed delays.
【24h】

Stochastic optimal control under randomly varying distributed delays.

机译:随机变化的分布时滞下的随机最优控制。

获取原文
获取原文并翻译 | 示例

摘要

A methodology for synthesis of stochastic optimal control and estimation law, referred to as Linear Quadratic Random Delay Compensation (LQRDC), has been developed in this dissertation. The objective is to circumvent the detrimental effects, both in stability and dynamic performance, of the randomly varying delays, from sensor to controller and from controller to actuator, in network-based control systems that are also subjected to plant disturbance and measurement noise. The LQRDC gain matrices and two pairs of discrete-time modified matrix Riccati and Lyapunov equations are simultaneously synthesized in the proposed methodology. In contrast to the conventional LQG problem, the pairs of modified matrix Riccati and Lyapunov equations under LQRDC are coupled by a projection matrix whose column and row spaces are shown to represent the control and estimation subspaces, respectively. The coupling between optimal control and estimation is the cause of breakdown of the certainty equivalence principle. It is shown that a set of conditions of mean square compensatability, for the closed-loop system, and mean square detectability, for the models of cost evaluation and noise covariance, are sufficient, and necessary in general, for the existence of a unique optimal LQRDC law. Furthermore, under these conditions, the stability of the closed-loop system is ensured in mean square sense.;Stability and performance of LQRDC are tested by two simulation experiments. One of these experiments is used to demonstrate that the closed-loop system may become unstable if, like LQG, the control and estimation laws are separately synthesized and then integrated whereas the LQRDC system remains inherently stable. The second simulation experiment exhibits the performance of LQRDC with ensured stability of a linearized Multiple-Input and Multiple-Output (MIMO) model of the longitudinal motion of an advanced aircraft.
机译:本文提出了一种随机最优控制和估计律的综合方法,称为线性二次随机延迟补偿(LQRDC)。目的是在基于网络的控制系统中,也要避免从传感器到控制器以及从控制器到执行器的随机变化的延迟在稳定性和动态性能方面的有害影响,该网络也受到工厂干扰和测量噪声的影响。该方法同时合成了LQRDC增益矩阵和两对离散时间修正矩阵Riccati和Lyapunov方程。与传统的LQG问题相反,LQRDC下的成对修改矩阵Riccati和Lyapunov方程对通过投影矩阵进行耦合,投影矩阵的列和行空间分别表示控制子空间和估计子空间。最优控制与估计之间的耦合是确定性等效原理失效的原因。结果表明,对于闭环系统,对于成本评估和噪声协方差模型,均方可补偿性和均方可检测性的条件集对于存在唯一最优条件是足够的,并且通常是必要的LQRDC法。此外,在这些条件下,在均方意义上确保了闭环系统的稳定性。通过两个仿真实验测试了LQRDC的稳定性和性能。这些实验之一被用来证明,如果像LQG一样,分别合成控制和估计定律然后对其进行积分,而LQRDC系统仍然固有地稳定,则闭环系统可能会变得不稳定。第二个模拟实验展示了LQRDC的性能,并确保了先进飞机纵向运动的线性化多输入多输出(MIMO)模型的稳定性。

著录项

  • 作者

    Tsai, Nan-Chyuan.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号