首页> 外文学位 >Drainage and fine particle retention in forming fibrous mats.
【24h】

Drainage and fine particle retention in forming fibrous mats.

机译:形成纤维毡时的排水和微粒保留。

获取原文
获取原文并翻译 | 示例

摘要

Drainage and fine particle retention phenomena during papermat formation over a wire screen are investigated. Drainage of a pulp suspension under gravity is modeled taking the formation of a compressible fiber mat into account. The drainage process is idealized as a sequence of constant pressure filtrations with the gravity head of the suspension determining the driving pressure. Compressibility effects are taken into account and theoretical predictions are obtained. Pressure drop, concentration and specific filtration resistance profiles are presented. It is found that the pressure inside the pulp mat undergoes a relaxation with time as mat build up occurs. Concentration profiles within the forming fiber mat are found to reflect this behavior as do the specific filtration resistance distributions. Comparison of drainage rate and filtrate volume data with experimental results for a variety of pulps indicates good agreement.; Fine particle (titanium dioxide) retention is studied using elements of depth filtration theory. Concentration profile, of fine particles, inside the forming mat as a function of time is determined under different electrokinetic conditions. A new procedure is developed to measure the fine particle concentration profile in a loosely bonded wet sheet. It is found that the cause for the well-known fine particle distribution in handsheets with a maximum on the wire-side is due to the age of the fiber mat layers. The layer closest to the wire captures fine particles for the maximum time as compared to layers near the top of the sheet that are among the later ones to form. Theoretical predictions are found to be in good agreement with the experimental data.; Drainage data from the gravity filtration of a suspension forming a compressible mat is shown to be useful in determining the specific surface area, specific volume and compressibility constants for papermaking pulps. An error minimization procedure is used to search for optimal parameters characterizing the pulp drainage. This procedure is applied to drainage data for variety of pulps to obtain the respective permeability and compressibility characteristics. These characteristics agree with earlier data for these pulps as well as with the data obtained by independent testing using the Pulmac permeability tester.; Gravity filtration theory is also applied to analyze freeness and drainage in a Tappi standard handsheet mold apparatus. The freeness of unrefined pulps is predicted quite accurately. Upon refining, fines are generated some of which are lost during the drainage process in a handsheet mold and freeness tester. Thus, experimental freeness values show deviation from theoretical predictions. When fines retention is taken into account, the predictions of freeness and drainage time agree with experimental measurements.
机译:研究了在丝网筛上形成纸垫的过程中的排水和微粒保留现象。考虑到可压缩纤维垫的形成,对在重力作用下的纸浆悬浮液进行排水建模。理想的排水过程是一系列恒压过滤,其中悬浮液的重力压头确定驱动压力。考虑可压缩性影响并获得理论预测。给出了压降,浓度和特定的过滤阻力曲线。已经发现,随着发生垫的堆积,纸浆垫内部的压力随着时间而松弛。发现成形纤维垫内的浓度分布与特定的过滤阻力分布一样反映了这种行为。各种纸浆的排水速率和滤液量数据与实验结果的比较表明,该方法具有很好的一致性。使用深度过滤理论的要素研究了微粒(二氧化钛)的保留。在不同的电动条件下,确定成型垫内部细颗粒的浓度分布随时间的变化。开发了一种新的程序来测量松散结合的湿片中的细颗粒浓度分布。已经发现,在手抄纸中众所周知的细颗粒分布的原因是在丝侧最大,这是由于纤维垫层的老化引起的。与最靠近金属丝的那一层相比,最靠近金属丝的那一层能在最长的时间内捕获细颗粒,而后者是随后形成的那一层。理论预测与实验数据非常吻合。悬浮液的重力过滤形成可压缩垫的排水数据显示对于确定造纸纸浆的比表面积,比体积和可压缩常数是有用的。误差最小化程序用于搜索表征纸浆排放的最佳参数。该程序应用于各种纸浆的排水数据,以获得各自的渗透性和可压缩性特征。这些特性与这些纸浆的早期数据以及通过使用Pulmac渗透性测试仪进行独立测试获得的数据一致。重力过滤理论也可用于分析Tappi标准手抄纸模具设备中的自由度和排水性。可以非常准确地预测未精制纸浆的游离度。精炼后会产生细粉,其中一些会在手工成型模具和游离度测试仪的排水过程中损失掉。因此,实验自由度值显示出与理论预测的偏差。当考虑细粉保留时,游离度和排水时间的预测与实验测量结果一致。

著录项

  • 作者

    Kumar, Parvin.;

  • 作者单位

    State University of New York College of Environmental Science and Forestry.;

  • 授予单位 State University of New York College of Environmental Science and Forestry.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 276 p.
  • 总页数 276
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程) ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号