首页> 外文学位 >Measurement of hyperfine coupling constants of the 5d doublet-D(3/2) and 5d doublet-D(5/2) levels in atomic cesium using polarization quantum beat spectroscopy.
【24h】

Measurement of hyperfine coupling constants of the 5d doublet-D(3/2) and 5d doublet-D(5/2) levels in atomic cesium using polarization quantum beat spectroscopy.

机译:使用极化量子拍谱法测量原子铯中5d doublet-D(3/2)和5d doublet-D(5/2)能级的超精细耦合常数。

获取原文
获取原文并翻译 | 示例

摘要

Accurate measurements of hyperfine constants have revealed effects that can not be explained by a simple hydrogenic picture of the alkali atoms such as cesium (1-3). More precise experimental results and theoretical treatments are in demand for the alkali elements, especially for atomic cesium because of its wide range of applications. Therefore, it is essential to understand its atomic and nuclear structure. Precision measurement of its excited-states properties such as hyperfine structure provides global information on nuclear charge and current distributions and also serves as a check to the theory and a calibration of calculated excited state wave functions. Accurate wave functions are important in many applications, including the analysis of atomic parity-violation experiments (4).; In this experiment, a pump-delayed-probe method based on quantum beat spectroscopy has been used. Cesium atoms are prepared by a short, resonant light pulse (the pump) in a superposition of excited hyperfine levels (5d{dollar}rmsp2Dsb{lcub}3/2{rcub}{dollar} or 5d{dollar}rmsp2Dsb{lcub}5/2{rcub}){dollar} through an electric quadrupole transition. The system evolves in time according to the Schrodinger equation with the coherence due to the unresolved hyperfine structure in the excited states. After a certain delay time, the second pulse (the probe) probes the system from the excited states to the final state (12p{dollar}rmsp2Psb{lcub}3/2{rcub}),{dollar} the fluorescence from the final state to the ground state (6s{dollar}rmsp2Ssb{lcub}1/2{rcub}{dollar}) is monitored and polarization spectra are measured. From the measured beat frequencies the magnetic dipole coupling constant a and electric quadrupole coupling constant b are obtained: a = {dollar}-{dollar}21.22(1) MHz; b = 0.16(15) MHz for 5d{dollar}rmsp2Dsb{lcub}5/2{rcub}{dollar} level and a = 48.80(3) MHz; b = 0.12(30) MHz for 5d{dollar}rmsp2Dsb{lcub}3/2{rcub}{dollar} level.
机译:精确测量超细常数已揭示出无法通过简单的氢原子铯(1-3)等氢原子图片来解释的效果。由于碱金属元素的广泛应用,因此需要更精确的实验结果和理论方法,尤其是对于原子铯。因此,必须了解其原子和核结构。对其超高结构等激发态性质的精确测量可提供有关核电荷和电流分布的全局信息,还可作为对理论和计算激发态波函数校准的检验。准确的波函数在许多应用中都很重要,包括原子奇偶违反实验的分析(4)。在该实验中,已经使用了基于量子拍谱的泵延迟探针方法。铯原子是由一个短的共振光脉冲(泵浦)以激发的超精细能级(5d {dollar} rmsp2Dsb {lcub} 3/2 {rcub} {dollar}或5d {dollar} rmsp2Dsb {lcub} 5 / 2 {rcub}){dollar}通过四极电跃迁实现。由于在激发态中未解析的超精细结构,该系统根据Schrodinger方程随时间变化并具有相干性。在一定的延迟时间后,第二个脉冲(探针)将系统从激发态探测到最终状态(12p {dollar} rmsp2Psb {lcub} 3/2 {rcub}),{dollar}从最终状态发出的荧光监测到基态(6s {dollar} rmsp2Ssb {lcub} 1/2 {rcub} {dollar})并测量偏振光谱。从测得的拍频中获得磁偶极耦合常数a和四极电耦合常数b:a = {dollar}-{dollar} 21.22(1)MHz;对于5d {dollar} rmsp2Dsb {lcub} 5/2 {rcub} {dollar}电平,b = 0.16(15)MHz; a = 48.80(3)MHz;对于5d {dollar} rmsp2Dsb {lcub} 3/2 {rcub} {dollar}电平,b = 0.12(30)MHz。

著录项

  • 作者

    Wo, Yei.;

  • 作者单位

    Old Dominion University.;

  • 授予单位 Old Dominion University.;
  • 学科 Physics Atomic.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

  • 入库时间 2022-08-17 11:49:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号