首页> 外文学位 >Processing and mechanical behavior of a short fiber reinforced metal matrix composite.
【24h】

Processing and mechanical behavior of a short fiber reinforced metal matrix composite.

机译:短纤维增强金属基复合材料的加工和力学行为。

获取原文
获取原文并翻译 | 示例

摘要

The nature of damage evolution in a discontinuously reinforced metal matrix composite subjected to fatigue loading is investigated in this study. The objective is to understand the stages in the damage process and the dominant mechanisms controlling failure. The macroscopic manifestation of damage, as indicated by changes in the mechanical response with continued exhaustion of life, is studied by monitoring the peak strains, hysteresis energy and fatigue modulus during cycling. The microscopic evidence of damage, on the other hand, is characterized at the surface by optical and electron microscopy, and monitored nondestructively for the bulk using acoustic emission. The alumina-silicate, short fiber reinforced aluminum alloy (A356) composites used were fabricated by the high pressure infiltration casting method (HiPIC). Nondestructive techniques were used successfully, both during and after processing, to detect preform crushing and porosity, respectively, to ensure that only sound specimens were tested. After characterizing the composite for microstructural features that could affect performance, modified dog-bone specimens were tested in tension-tension fatigue (R = 0.1).; The development of damage in the composite is driven by, and sensitive to, the applied strains because of the limited elongation to failure. Microstructural damage evolves by three distinctly different mechanisms--by cracking at hollow shot particles, by microcracking of fibers throughout the bulk, and by void nucleation at stress concentrations, such as fiber ends. The ductile, proeutectic phase acts as an effective barrier against the growth of cracks and linking of microcracks. Just prior to catastrophic failure, the cracks initiated at the shot particles link with each other through the intervening microcracked material, causing rupture. Acoustic emission results corroborate the observed microstructural evidence. The fatigue modulus reveals the accumulation of strain (dynamic or cyclic creep) due to the tensile mean stresses. However, the microstructural damage evolution is not reflected strongly in the variation of Young's modulus and hysteresis energy in a cycle. The above sequence of events, broadly consisting of initiation of cracks at hollow shot, growth of distributed damage (by microcracking of fibers), followed by crack linking just prior to failure, defines the failure process.
机译:在本研究中研究了不连续增强金属基复合材料在疲劳载荷作用下损伤演化的本质。目的是了解损坏过程的各个阶段以及控制故障的主要机制。通过监测循环过程中的峰值应变,磁滞能量和疲劳模量,可以研究损伤的宏观表现,如机械响应随寿命的耗尽而变化所示。另一方面,通过光学和电子显微镜对损坏的微观证据进行了表征,并使用声发射对大块物质进行了无损监测。通过高压浸铸法(HiPIC)制备所使用的铝硅酸盐,短纤维增强铝合金(A356)复合材料。在加工过程中和加工后,无损检测技术分别成功地用于检测瓶坯的压碎度和孔隙率,以确保仅对声音样本进行测试。在对复合材料的微观结构特征进行了表征(可能会影响性能)之后,对改良的狗骨头标本进行了拉伸-拉伸疲劳试验(R = 0.1)。由于破坏的伸长率有限,复合材料中损坏的发展是由所施加的应变驱动并对其敏感。微观结构的损坏是通过三种截然不同的机制演变而来的:中空的散粒破裂,整个主体中的纤维微破裂,应力集中的空核(例如纤维末端)。延性,共晶相可有效阻止裂纹扩展和微裂纹连接。就在灾难性破坏发生之前,由弹丸引发的裂纹通过中间的微裂纹材料相互连接,从而导致破裂。声发射结果证实了观察到的微观结构证据。疲劳模量揭示了由于拉伸平均应力而引起的应变累积(动态或循环蠕变)。然而,微观结构损伤的演化并没有强烈地反映在一个周期的杨氏模量和滞后能量的变化中。上面的事件顺序大致包括中空击穿处的裂纹萌生,分布损伤的增长(通过纤维的微裂纹)以及紧接故障之前的裂纹连接,从而确定了故障过程。

著录项

  • 作者

    Canumalla, Sridhar.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Applied Mechanics.; Engineering Materials Science.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;工程材料学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号