首页> 外文学位 >Active staining for in vivo magnetic resonance microscopy of the mouse brain.
【24h】

Active staining for in vivo magnetic resonance microscopy of the mouse brain.

机译:小鼠大脑体内磁共振显微镜的主动染色。

获取原文
获取原文并翻译 | 示例

摘要

Mice have become the preferred model system for studying brain function and disease. With the powerful genetic tools available, mouse models can be created to study the underlying molecular basis of neurobiology in vivo. Just as magnetic resonance imaging is the dominant tool for evaluating the human brain, high-resolution MRI---magnetic resonance microscopy (MRM)---is a useful tool for studying the brain of mouse models. However, the need for high spatial resolution limits the signal-to-noise ratio (SNR) of the MRM images. To address this problem, T1-shortening contrast agents can be used, which not only improve the tissue contrast-to-noise ratio (CNR) but also increase SNR by allowing the MR signal to recover faster between pulses. By "actively staining" the tissue with these T1-shortening agents, MRM can be performed with higher resolution, greater contrast, and shorter scan times. In this work, active staining with T1-shortening agents was used to enhance three types of in vivo mouse brain MRM: (1) angiographic imaging of the neurovasculature, (2) anatomical imaging of the brain parenchyma, and (3) functional imaging of neuronal activity.;For magnetic resonance angiography (MRA) of the mouse, typical contrast agents are not useful because they are quickly cleared by the body and/or extravasate from the blood pool before a high-resolution image can be acquired. To address these limitations, a novel contrast agent---SC-Gd liposomes---has been developed, which is cleared slowly by the body and is too large to extravasate from the blood pool. In this work, MRA protocols were optimized for both the standard technique (time-of-flight contrast) and SC-Gd liposomes. When the blood was stained with SC-Gd liposomes, small vessel CNR improved to 250% that of time-of-flight. The SC-Gd liposomes could also be used to reduce scan time by 75% while still improving CNR by 32%.;For MRM of the mouse brain parenchyma, active staining has been used to make dramatic improvements in the imaging of ex vivo specimens. However for in vivo imaging, the blood-brain barrier (BBB) prevents T1-shortening agents from entering the brain parenchyma. In this work, a noninvasive technique was developed for BBB opening with microbubbles and ultrasound (BOMUS). Using BOMUS, the parenchyma of the brain could be actively stained with the T1-shortening contrast agent, Gd-DTPA, and MRM images could be acquired in vivo with unprecedented resolution (52 x 52 x 100 mum3) in less than 1 hour.;Functional MRI (fMRI), which uses blood oxygen level dependant (BOLD) contrast to detect neuronal activity, has been a revolutionary technique for studying brain function in humans. However, in mice, BOLD contrast has been difficult to detect and thus routine fMRI in mice has not been feasible. An alternative approach for detecting neuronal activity uses manganese (Mn 2+). Mn2+ is a T1-shortening agent that can enter depolarized neurons via calcium channels. Thus, Mn2+ is a functional contrast agent with affinity for active neurons. In this work, Mn 2+ (administered with the BOMUS technique) was used to map the neuronal response to stimulation of the vibrissae. The resultant activation map showed close agreement to published maps of the posterior-lateral and anterior-medial barrel field of the primary sensory cortex.;The use of T1-shortening agents to actively stain tissues of interest---blood, brain parenchyma, or active neurons---will facilitate the use of MRM for studying mouse models of brain development, function, and disease.
机译:小鼠已成为研究脑功能和疾病的首选模型系统。利用可用的强大遗传工具,可以创建小鼠模型来研究体内神经生物学的潜在分子基础。正如磁共振成像是评估人脑的主要工具一样,高分辨率MRI(磁共振显微镜(MRM))是研究小鼠模型大脑的有用工具。但是,对高​​空间分辨率的需求限制了MRM图像的信噪比(SNR)。为了解决这个问题,可以使用缩短T1的造影剂,它不仅可以改善组织的对比度噪声比(CNR),还可以通过使MR信号在脉冲之间更快地恢复来提高SNR。通过使用这些T1缩短剂对组织进行“主动染色”,可以以更高的分辨率,更大的对比度和更短的扫描时间执行MRM。在这项工作中,使用T1缩短剂进行主动染色可增强三种类型的体内小鼠大脑MRM:(1)神经脉管系统的血管造影成像,(2)脑实质的解剖成像和(3)大脑实质的功能成像对于小鼠的磁共振血管造影(MRA),典型的造影剂没有用,因为在获取高分辨率图像之前,它们会被身体迅速清除和/或从血池中渗出。为了解决这些局限性,已经开发出一种新型的造影剂-SC-Gd脂质体-可以被人体缓慢清除,并且太大而无法从血泊中渗出。在这项工作中,针对标准技术(飞行时间对比)和SC-Gd脂质体对MRA方案进行了优化。当血液用SC-Gd脂质体染色时,小血管CNR改善为飞行时间的250%。 SC-Gd脂质体也可用于减少75%的扫描时间,同时仍可将CNR改善32%。对于小鼠脑实质的MRM,活性染色已被用于显着改善离体标本的成像。但是,对于体内成像,血脑屏障(BBB)可以防止T1缩短剂进入脑实质。在这项工作中,开发了一种无创技术,用于通过微泡和超声(BOMUS)打开BBB。使用BOMUS,可以使用T1缩短造影剂,Gd-DTPA对脑实质进行主动染色,并且可以在不到1小时的时间内以前所未有的分辨率(52 x 52 x 100 mum3)在体内获取MRM图像。功能性MRI(fMRI)使用血氧水平依赖性(BOLD)对比来检测神经元活动,已经成为研究人类脑功能的一项革命性技术。但是,在小鼠中,BOLD对比很难检测到,因此在小鼠中进行常规功能磁共振成像是不可行的。检测神经元活动的另一种方法是使用锰(Mn 2+)。 Mn2 +是一种T1缩短剂,可以通过钙通道进入去极化的神经元。因此,Mn 2+是对活性神经元具有亲和力的功能性造影剂。在这项工作中,Mn 2+(通过BOMUS技术管理)用于绘制神经元对触须刺激的反应图。最终的激活图显示与主要感觉皮层的后外侧和前内侧桶区的已发布图非常吻合。;使用T1缩短剂积极染色感兴趣的组织-血液,脑实质或活跃的神经元-将促进使用MRM研究小鼠大脑发育,功能和疾病的模型。

著录项

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Biology Neuroscience.;Engineering Biomedical.;Health Sciences Radiology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号