首页> 外文学位 >Genetic engineering of Erwina for the conversion of biomass to ethanol.
【24h】

Genetic engineering of Erwina for the conversion of biomass to ethanol.

机译:欧文氏菌的基因工程,可将生物质转化为乙醇。

获取原文
获取原文并翻译 | 示例

摘要

Lignocellulose is an abundant feedstock for the production of fuel ethanol. It consists of approximately 70% carbohydrate in the form of hemicellulose and cellulose. Both of these polymers must be solubilized prior to microbial conversion to ethanol. Although hemicellulose can be hydrolyzed to monomers by dilute acids, stronger acids or expensive fungal enzymes are necessary for the solubilization of cellulose. The simultaneous saccharification-fermentation (SSF) process developed by the Gulf Oil Co. in 1976 combines cellulose hydrolysis with microbial fermentation. This dissertation focuses on the genetic engineering of Erwinia for hydrolysis of cellulose and fermentation to ethanol using a modified SSF process. Erwinia species offer potential advantages over other organisms for the bioconversion of cellulose. These include the secretion of endoglucanases and the ability to metabolize cellobiose, a potent feedback inhibitor of fungal cellulases.; Two laboratory strains of Erwinia and a number of field isolates were engineered to produce ethanol by expressing the Zymomonas mobilis pdc and adhB genes on plasmids. Recombinant E. chrysanthemi and E. carotovora produced over 45 g liter{dollar}sp{lcub}-1{rcub}{dollar} ethanol from glucose, xylose, and cellobiose, approaching the theoretical maximum for each. The rates of ethanol production from xylose and glucose were greater than 2.0 g liter{dollar}rmsp{lcub}-1{rcub} hsp{lcub}-1{rcub}{dollar} for both strains. The rate of cellobiose conversion to ethanol, 1.7 g liter{dollar}rmsp{lcub}-1{rcub} h{lcub}-1{rcub},{dollar} was higher than previously reported for any previous ethanologenic microorganism.; Several approaches have been evaluated to reduce the amount of fungal cellulase required for SSF. One method is to produce supplemental Erwinia endoglucanase during the pentose fermentation. E. coli strain KO11, which rapidly ferments corn hydrolysates to ethanol (38 g liter{dollar}sp{lcub}-1{rcub}{dollar} in 48 h), was used to express cloned celZ of E. chrysanthemi PI. Expression of celZ by E. coli KO11 during the fermentation of xylose at a concentration of 90 g liter{dollar}sp{lcub}-1{rcub}{dollar} produced 44 g liter{dollar}sp{lcub}-1{rcub}{dollar} ethanol and 36,000 IU liter{dollar}sp{lcub}-1{rcub}{dollar} of endoglucanase activity. By adding this recombinant endoglucanase to cellulose fermentations with Klebsiella oxytoca strain P2, the requirement for fungal cellulase was reduced to half the level needed in previous investigations. Under these conditions over 39 g liter{dollar}sp{lcub}-1{rcub}{dollar} ethanol (70% theoretical yield) was produced in 168 hours by K. oxytoca P2.
机译:木质纤维素是用于生产燃料乙醇的丰富原料。它由大约70%的半纤维素和纤维素形式的碳水化合物组成。在微生物转化为乙醇之前,必须先溶解这两种聚合物。尽管半纤维素可以被稀酸水解成单体,但是更强的酸或昂贵的真菌酶对于溶解纤维素是必需的。海湾石油公司于1976年开发的同时糖化发酵(SSF)工艺将纤维素水解与微生物发酵结合在一起。本论文主要研究欧文氏菌的遗传工程,利用改良的SSF工艺对纤维素进行水解并发酵为乙醇。欧文氏菌种在纤维素的生物转化方面比其他生物具有潜在的优势。这些包括内切葡聚糖酶的分泌和代谢纤维二糖的能力,纤维二糖是真菌纤维素酶的有效反馈抑制剂。通过在质粒上表达运动发酵单胞菌pdc和adhB基因,工程改造了两种欧文氏菌的实验室菌株和许多现场分离株,以生产乙醇。重组的金黄色葡萄球菌和胡萝卜芽孢杆菌由葡萄糖,木糖和纤维二糖产生了超过45 g升的{dol} sp {lcub} -1 {rcub} {dollar}乙醇,各自接近理论最大值。对于两种菌株,由木糖和葡萄糖产生的乙醇的速率均大于2.0g /升{dolrm} rmsp {lcub} -1 {rcub} hsp {lcub} -1 {rcub} {dollar}。纤维二糖向乙醇的转化速率为1.7 g {dollar} rmsp {lcub} -1 {rcub} h {lcub} -1 {rcub},{dollar},高于之前报道的任何产乙醇微生物。已经评估了几种方法来减少SSF所需的真菌纤维素酶的量。一种方法是在戊糖发酵过程中产生补充性欧文氏菌内切葡聚糖酶。使用大肠杆菌菌株KO11快速将玉米水解物发酵成乙醇(在48小时内将38 g升{dol}} {lcub} -1 {rcub} {dol}发酵,以表达克隆的大肠杆菌celZ celZ。木糖在浓度为90升{dol} sp {lcub} -1 {rcub} {dollar}的木糖发酵过程中,大肠杆菌KO11的celZ表达产生了44 g升{dollar} sp {lcub} -1 {rcub } {dollar}乙醇和36,000 IU升{dollar} sp {lcub} -1 {rcub} {dollar}的内切葡聚糖酶活性。通过将这种重组内切葡聚糖酶添加到产酸克雷伯菌菌株P2的纤维素发酵中,真菌纤维素酶的需求量降低到以前研究所需水平的一半。在这些条件下,产氧假单胞菌P2在168小时内产生了39克升的{dol} sp {lcub} -1 {rcub} {dollar}乙醇(理论收率的70%)。

著录项

  • 作者

    Beall, David Stuart.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Biology Microbiology.; Energy.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学 ; 能源与动力工程 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号