首页> 外文学位 >Probabilistic engineering design optimization: Application to spacecraft and navigation systems.
【24h】

Probabilistic engineering design optimization: Application to spacecraft and navigation systems.

机译:概率工程设计优化:应用于航天器和导航系统。

获取原文
获取原文并翻译 | 示例

摘要

In addition to designing engineering systems for optimal performance, developing systems that are robust to possible failures and/or non-ideal operating conditions is of great importance. In modern engineering practice, this is normally accomplished by incorporating conservative performance margins such that projected "worst-case" outcomes can be accommodated. In aerospace, safety or robustness considerations often dominate the design process, but this can lead to over-designed systems, lengthy development programs, and expensive final products.; Provided that decision makers accept the unavoidable possibility of failure, a superior approach based on system uncertainty and user utility modeling exists. System performance uncertainty, including unknown parameters and possible unit failures, is modeled using the best available information. The user's utility function, of arbitrary mathematical form, expresses the relative "goodness" of all possible outcomes. Once the axioms of decision theory are met, a maximum-utility search among the design space determines the optimal solution. Because these problems do not conform to standard mathematical assumptions, there is no guarantee of finding the best possible answer, but modern computer search techniques now provide the capability to converge toward the global optimum in reasonable time. As with traditional systems engineering, the optimal-decision process is iterative, since the computer search results are reviewed by designers who can further develop their risk and utility models.; This approach has been successfully applied to several system design tasks in this thesis. A tutorial aircraft landing control problem is used to demonstrate the basic procedure. New models for spacecraft reliability prediction have been combined with mission utility functions to predict the overall mission reliability of the Gravity Probe-B (GP-B) spacecraft and to find improved redundancy architectures. Uncertainty-based optimization has also been demonstrated to significantly improve the process of Receiver Autonomous Integrity Monitoring (RAIM) for Global Positioning System (GPS) navigation users. Similar uncertainty models applied to augmented Differential GPS (DGPS) systems can predict overall performance and integrity for large regions of users. Combining these with top-level objective models allows augmented GPS architectures to be optimized iteratively, as the latest experimental data updates the risk model and motivates additional system improvements.
机译:除了设计用于最佳性能的工程系统外,开发对可能的故障和/或非理想的运行状况具有鲁棒性的系统也非常重要。在现代工程实践中,这通常是通过合并保守的性能余量来实现的,这样可以适应预计的“最坏情况”的结果。在航空航天中,安全性或耐用性通常是设计过程中的主要问题,但这可能导致系统设计过度,开发程序冗长,最终产品价格昂贵。如果决策者接受不可避免的失败可能性,则存在基于系统不确定性和用户效用建模的高级方法。系统性能不确定性(包括未知参数和可能的单元故障)使用最佳信息建模。任意数学形式的用户效用函数表示所有可能结果的相对“优”。一旦满足了决策理论的公理,设计空间中的最大效用搜索将确定最佳解决方案。由于这些问题不符合标准的数学假设,因此无法保证找到最佳的答案,但是现代计算机搜索技术现在提供了在合理的时间内向全局最优收敛的能力。与传统的系统工程一样,最佳决策过程是迭代的,因为计算机搜索结果由设计人员审核,设计师可以进一步开发其风险和实用新型。该方法已经成功地应用于本文的几个系统设计任务中。教程飞机着陆控制问题用于演示基本程序。航天器可靠性预测的新模型已与任务实用程序功能结合在一起,以预测重力探测器B(GP-B)航天器的总体任务可靠性,并找到改进的冗余架构。还证明了基于不确定性的优化可以显着改善全球定位系统(GPS)导航用户的接收机自主完整性监控(RAIM)的过程。适用于增强型差分GPS(DGPS)系统的类似不确定性模型可以预测大范围用户的整体性能和完整性。将这些与顶级目标模型结合在一起,可以迭代地优化增强型GPS体系结构,因为最新的实验数据更新了风险模型并推动了其他系统的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号