首页> 外文学位 >Regulation of myocardial cross-bridge cyling kinetics by myosin binding protein C: Structural insights from x-ray diffraction studies.
【24h】

Regulation of myocardial cross-bridge cyling kinetics by myosin binding protein C: Structural insights from x-ray diffraction studies.

机译:肌球蛋白结合蛋白C对心肌跨桥循环动力学的调节:X射线衍射研究的结构见解。

获取原文
获取原文并翻译 | 示例

摘要

Mutations in the gene encoding cardiac myosin binding protein-C (cMyBP-C) comprise the most common cause of hypertrophic cardiomyopathies (HCM), a disease that affects 1 in 500 individuals and is the leading cause of sudden death among athletes and young people. In addition, altered phosphorylation of cMyBP-C in heart muscle cells contributes to beat-to-beat regulation of myocardial function and may contribute to compensatory mechanisms and contractile dysfunction in heritable and acquired myocardial disease. In myocardium, the phosphorylation status of myofibrillar proteins affects protein function, which modulates Ca2+ activated force and the rate at which force is developed, presumably as a consequence of alterations in myofilament structure. We hypothesize that cMyBP-C normally acts to tether myosin cross-bridges near to the thick filament backbone, thereby reducing the likelihood of cross-bridge binding to actin and limiting the cooperative activation of the thin filament; upon protein kinase A-mediated (PKA) phosphorylation of cMyBP-C, the tether-like constraint of myosin heads due to interactions with cMyBP-C is relieved by disruption of its binding to myosin, resulting in movement of the heads toward actin, increased likelihood of myosin head binding to actin, and acceleration of the kinetics of cross-bridge cycling.;To explore the structural basis for cMyBP-C function, we used synchrotron low-angle x-ray diffraction to measure inter-thick filament spacing and the equatorial intensity ratio, I1,1/ I1,0, in skinned myocardium. Trabeculae were isolated from wild-type and genetically-modified mice, including the cMyBP-C knockout (cMyBP-C-/-) mouse which mimics human hypertrophic cardiomyopathy, exhibiting both septal hypertrophy and contractile dysfunction. The main finding of our studies is that I1,1/I 1,0 increases upon ablation or phosphorylation of cMyBP-C, which we interpret as a radial or aziumuthal displacement of cross-bridges away from the thick filament backbone and closer to actin. Our studies are consistent with a mechanism in which cMyBP-C modulates cross-bridge cycling kinetics by regulating the proximity and therefore the probability of interaction of myosin with actin. Such a mechanism is likely mediated by dynamic interactions between the S2 region in myosin and the PKA phosphorylation motif in cMyBP-C.
机译:编码心肌肌球蛋白结合蛋白-C(cMyBP-C)的基因中的突变是肥大性心肌病(HCM)的最常见原因,该疾病影响每500个人中的1个人,是运动员和年轻人突然死亡的主要原因。此外,心肌细胞中cMyBP-C磷酸化的改变有助于心肌功能的逐节律调节,并且可能有助于遗传性和获得性心肌病的补偿机制和收缩功能障碍。在心肌中,肌原纤维蛋白的磷酸化状态影响蛋白功能,从而调节Ca2 +激活力和力的产生速率,这可能是肌丝结构改变的结果。我们假设cMyBP-C正常作用是束缚靠近粗丝骨架的肌球蛋白横桥,从而降低了横桥与肌动蛋白结合的可能性,并限制了细丝的协同激活。在蛋白激酶A介导的cMyBP-C磷酸化后,由于与cMyBP-C的相互作用而导致的肌球蛋白头束缚状约束因其与肌球蛋白的结合破坏而得以缓解,导致头向肌动蛋白的运动增加肌球蛋白头部结合肌动蛋白的可能性,以及跨桥循环动力学的加速。;为探究cMyBP-C功能的结构基础,我们使用同步加速器低角度X射线衍射来测量厚度间的细丝间距和皮肤心肌中的赤道强度比为I1,1 / I1,0。小梁是从野生型和转基因小鼠中分离出来的,包括模仿人肥厚型心肌病的cMyBP-C基因敲除(cMyBP-C-/-)小鼠,既表现出间隔肥大,又表现出收缩功能障碍。我们研究的主要发现是,当cMyBP-C消融或磷酸化时,I1,1 / I 1,0会增加,我们将其解释为远离粗丝骨架并更接近肌动蛋白的交叉桥的径向或方位角位移。我们的研究与cMyBP-C通过调节邻近度以及因此调节肌球蛋白与肌动蛋白相互作用的可能性来调节跨桥循环动力学的机制一致。这种机制可能是由肌球蛋白的S2区和cMyBP-C中的PKA磷酸化基序之间的动态相互作用介导的。

著录项

  • 作者

    Colson, Brett A.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Biology Molecular.;Biophysics Medical.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号