首页> 外文学位 >Design of advanced aluminum silicon alloy compositions and processing.
【24h】

Design of advanced aluminum silicon alloy compositions and processing.

机译:先进的铝硅合金成分设计和加工。

获取原文
获取原文并翻译 | 示例

摘要

Part I discusses the development of an aluminum-magnesium-silicon alloy that may combine strength, extrudability, favorable corrosion resistance with low cost and scrap compatibility. The first part of the study determined the effects of small composition, heat treatment and mechanical processing changes on the ambient temperature tensile properties of the alloy. A combination of magnesium and silicon of about 2%, 1% copper, 0.2% chromium and 0.1% vanadium can produce a T6 alloy with significant higher strength, fatigue and corrosion fatigue properties for both ingot and extrusion than those of 6061 but with only a modest increase in cost. The new alloy has been designated as AA6069. The second part of the study determined the T6 properties of 6069 alloy. The tensile test results of cold and hot extrusions of hollow, solid bars, and high pressure cylinders indicate that the T6 properties ranged from 55-70 ksi (380-490 MPa) UTS, 50-65 ksi (345-450 MPa) yield strength, and 10-18% elongation. It also appears that the fracture toughness and general corrosion resistance in saline environment are comparable or better than those of 6061 T6.; Part II attempted to evaluate the formation, formability, thermal and mechanical properties of semi-solid A356, A357 and modified aluminum silicon semi-solid alloys. The semi-solid alloy microstructure was produced in this study by purely thermal treatment rather than conventional and expensive electromagnetic or mechanical stirring. Three heat-up stages in semi-solid treatment were evaluated. Stage I is related to the heating of the alloy in the solid state. Stage II is related to the eutectic reaction. Stage III is related to the heating of the semi-solid slurry. Stage II requires the longest time of the three heat-up stages due to the endothermic reaction on heating. An increase of furnace temperature can greatly reduce the time of stage II. The atmosphere (vacuum, air, argon) of the semi-solid treatment does not appear to greatly affect the T6 properties of semi-solid alloys. The microstructure and T6 properties of semi-solid A356 do not appear sensitive to the homogenization treatments before semi-solid treatment. The porosity of semi-solid ingots and pressed parts increases as the cooling rate decreases in unformed and subsequent-to-moderate pressure forming. The T6 properties basically appear sensitive to voids, with a degradation of properties as the void concentration increases. The formability of A357 may be improved as the spheroidal particle size decreases. Hence, formability may improve with decreasing ingot grain size. The mechanism of coarsening of the solid phase at isothermal temperatures is related to Ostwald ripening and/or "merging" of particles. The mechanical properties of die-casting parts show that the method of thermal treatment to produce a spheroidal microstructure is an effective method for industrial production of semi-solid aluminum-silicon alloys.
机译:第一部分讨论了铝镁硅合金的发展,这种铝镁硅合金可以兼具强度,可挤出性,良好的耐腐蚀性以及低成本和废料兼容性。研究的第一部分确定了小的组成,热处理和机械加工变化对合金环境温度拉伸性能的影响。镁和硅的混合物(约2%,1%铜,0.2%铬和0.1%钒)可以生产出比6061的铸锭和挤压铸件具有更高的强度,疲劳和腐蚀疲劳性能的T6合金,但仅具有适度增加成本。新合金已被指定为AA6069。研究的第二部分确定了6069合金的T6性能。中空,实心棒和高压圆柱体的冷挤压和热挤压的拉伸测试结果表明,T6特性的范围为55-70 ksi(380-490 MPa)UTS,50-65 ksi(345-450 MPa)屈服强度,伸长率10-18%。还显示出在盐环境中的断裂韧性和总体耐腐蚀性与6061 T6相当或更好。第二部分试图评估半固态A356,A357和改性铝硅半固态合金的形成,可成形性,热和机械性能。在这项研究中,半固态合金的微观结构是通过纯热处理而不是常规且昂贵的电磁或机械搅拌来生产的。对半固态处理中的三个加热阶段进行了评估。阶段I涉及固态合金的加热。第二阶段与共晶反应有关。阶段III与半固体浆料的加热有关。由于加热时发生吸热反应,因此第二阶段需要三个加热阶段中最长的时间。炉温的升高可以大大减少第二阶段的时间。半固态处理的气氛(真空,空气,氩气)似乎并未极大地影响半固态合金的T6性能。半固体A356的微观结构和T6特性对半固体处理之前的均质处理似乎并不敏感。半固态铸锭和压制零件的孔隙率随着未成型以及随后的中到中等压力成型中冷却速率的降低而增加。 T6性质基本上表现为对空隙敏感,随着空隙浓度的增加,其性能会下降。随着球状颗粒尺寸的减小,可以改善A357的可成形性。因此,随着铸锭粒度的减小,可成形性可以提高。等温温度下固相粗化的机理与颗粒的奥斯特瓦尔德熟化和/或“合并”有关。压铸零件的机械性能表明,通过热处理产生球状微结构的方法是工业化生产半固态铝硅合金的有效方法。

著录项

  • 作者

    Li, Xiao.;

  • 作者单位

    Oregon State University.;

  • 授予单位 Oregon State University.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号