首页> 外文学位 >Mobility power flow (MPF) approach applied to fluid-loaded shells with ring discontinuities.
【24h】

Mobility power flow (MPF) approach applied to fluid-loaded shells with ring discontinuities.

机译:移动功率流(MPF)方法应用于具有环不连续性的流体加载壳体。

获取原文
获取原文并翻译 | 示例

摘要

The vibrational and acoustic characteristics of fluid-loaded, cylindrical shells with single or multiple, aperiodically-spaced ring discontinuities are studied using an approach based on the mobility power flow (MPF) method and a hybrid numerical/analytical method for the evaluation of the velocity Green's function of the shell. The discontinuities are associated with internal structures coupled to the shell via ring junctions. The approach is a framework allowing alternative shell and/or internal structure models to be used. The solution consists of the net vibrational power flow between the shell and internal structure(s) at the junction(s), the shell's velocity Green's function, and the far-field acoustic pressure. Use of the MPF method is advantageous because the net power flow solution can be used as a diagnostic tool in ascertaining the proper coupling between the shell and internal structure(s) at the junction(s). Results are presented for two canonical problems: an infinite, thin cylindrical shell, externally fluid-loaded by a heavy fluid, coupled internally to: (1) a single damped circular plate bulkhead, and (2) a double bulkhead consisting of two identical damped circular plates spaced a shell diameter apart. Two excitation mechanisms are considered for each model: (1) insonification of the shell by an obliquely-incident, acoustic plane wave, and (2) a radial ring load applied to the shell away from the junction(s). The shell's radial velocity Green's function and far-field acoustic pressure results are presented and analyzed to study the behavior of each model. In addition, a comparison of these results accentuates the qualitative difference in the behavior between the single and multiple junction models. When multiple internal structures are present, the results are strongly influenced by inter-junction coupling communicated through the shell and the fluid. Results are presented for circumferential modes n = 0 & 2. The qualitative differences in the results for modes n = 0 and n = 2 (indicative of all modes {dollar}n > 0{dollar}) are presented and discussed. Using the formulation, an analysis is presented to specifically associate the features identified in the far-field acoustic pressure and velocity Green's function response with the characteristics of the shell and internal plate bulkhead. The results for the single junction model demonstrate the significance of the shell's membrane waves on the reradiation of acoustic energy from the shell; however, when multiple junctions are present, inter-junction coupling results in a significant broad acoustic scattering pattern. Using the results and analysis presented here, a better understanding can be obtained of fluid-loaded shells, which can be used to reduce the strength of the acoustic pressure field produced by the shell.
机译:使用基于运动潮流(MPF)方法和混合数值/分析方法的速度评估方法,研究了具有单个或多个非周期性间隔的不连续环的流体加载圆柱壳的振动和声学特性绿色的外壳功能。不连续与通过环结连接到壳的内部结构有关。该方法是一个框架,允许使用替代的外壳和/或内部结构模型。该解决方案包括壳体与交界处的内部结构之间的净振动功率流,壳体的速度格林函数以及远场声压。 MPF方法的使用是有利的,因为净功率流解决方案可以用作诊断工具,以确定壳体和接合处的内部结构之间的适当耦合。给出了两个规范问题的结果:一个无限的,薄的圆柱壳,由重流体外部加载,并内部耦合到:(1)一个带阻尼的圆盘隔板,以及(2)由两个相同的带阻尼的双隔板圆形板将外壳直径隔开。对于每个模型,考虑了两种激励机制:(1)倾斜入射的声平面波使壳体声化,以及(2)远离接合处施加到壳体的径向环载荷。给出并分析了壳的径向速度格林函数和远场声压结果,以研究每个模型的行为。此外,对这些结果的比较突出了单结模型和多结模型之间行为的定性差异。当存在多个内部结构时,结果会受到通过外壳和流体传递的结间耦合的强烈影响。给出了圆周模式n = 0和2的结果。给出并讨论了模式n = 0和n = 2(表示所有模式{dol} n> 0 {dollar})时结果的质量差异。使用该公式,可以进行分析,以将远场声压和格林速度函数响应中识别出的特征与壳体和内板隔板的特征相关联。单结模型的结果证明了壳的膜波对壳的声能辐射的重要性。但是,当存在多个结时,结间耦合会导致明显的宽声散射模式。使用此处提供的结果和分析,可以更好地理解流体加载的壳体,该壳体可以用来降低壳体产生的声压场的强度。

著录项

  • 作者

    McCain, Thomas Scott.;

  • 作者单位

    Florida Atlantic University.;

  • 授予单位 Florida Atlantic University.;
  • 学科 Engineering Marine and Ocean.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 278 p.
  • 总页数 278
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 海洋工程;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号