首页> 外文学位 >High-temperature oxidation, aging and creep in carbon-fiber reinforced polyimide composites during thermal fatigue.
【24h】

High-temperature oxidation, aging and creep in carbon-fiber reinforced polyimide composites during thermal fatigue.

机译:碳纤维增强聚酰亚胺复合材料在热疲劳过程中的高温氧化,老化和蠕变。

获取原文
获取原文并翻译 | 示例

摘要

Concerns about oxidation, chemical and physical aging, and residual stresses have been noted in carbon-fiber reinforced polyimide composites when exposed to an elevated temperature environment. Among other important considerations, issues relating to thermal fatigue are recognized to be critical barriers for long-term reliable performance of high-temperature composite materials in various advanced applications. It is therefore crucial to understand the thermal-fatigue behavior of the composite.;The main objective of this study is to predict long-term thermal and mechanical behavior, and service life of polyimide composites subjected to isothermal and nonisothermal (thermal cycling) environments, based on short-term tests. In this research, a combined experimental and theoretical study of high-temperature oxidation, aging and mechanical creep of polyimide composites is carried out.;A viscoelastic constitutive model with support of the free-volume theory is developed to predict high-temperature isothermal and nonisothermal creep coupled with oxidation, chemical and physical aging, mechanical loading and associated damages. A thermal-fatigue furnace with quartz-rod extensometer is developed for strain measurements during elevated nonisothermal history. A systematic study of isothermal and nonisothermal oxidation, aging and creep experiments is conducted to verify the model.;The present study suggests that the contribution of chemical aging is more dominant than physical aging in governing the aging and creep properties of polyimide composites. In the thermal fatigue study, the nonisothermal history is approximated by a finite number of isothermal steps and an integration over the temperature profile. The behaviors of thermal-fatigue aging and creep properties are predicted by short-term isothermal experiments and excellent agreement is achieved. However, as the testing time or thermal cycles become longer or larger, the experimental results begin to deviate substantially from the predictions due to the oxidation, creep and residual stress induced damages. Using the damage mechanics concept of effective stress, the agreement of long-term predictions with experimental results can be further improved.;Mechanisms of oxidation, physical aging and chemical aging for polyimide composites are identified. The interactions/coupling among aging, mechanical creep, thermal fatigue and associated damage are investigated. The results indicate that cyclic thermal history and their interactions may induce further property degradation.
机译:当暴露于高温环境下时,碳纤维增强聚酰亚胺复合材料中存在有关氧化,化学和物理老化以及残余应力的问题。除其他重要考虑因素外,与热疲劳有关的问题被认为是高温复合材料在各种先进应用中长期可靠性能的关键障碍。因此,了解复合材料的热疲劳行为至关重要。本研究的主要目的是预测在等温和非等温(热循环)环境下聚酰亚胺复合材料的长期热性能和机械性能以及使用寿命,根据短期测试。本研究对聚酰亚胺复合材料的高温氧化,老化和机械蠕变进行了实验和理论相结合的研究;建立了基于自由体积理论的粘弹性本构模型,用于预测高温等温和非等温蠕变,氧化,化学和物理老化,机械负载以及相关的损坏。开发了带有石英棒引伸计的热疲劳炉,用于在非等温历史升高期间进行应变测量。对等温和非等温氧化,时效和蠕变实验进行了系统研究,以验证该模型。本研究表明,化学时效在控制聚酰亚胺复合材料的时效和蠕变性能方面比物理时效更为重要。在热疲劳研究中,非等温历史可通过有限数量的等温步长和温度分布的积分来近似。通过短期等温实验预测了热疲劳老化和蠕变性能,并取得了很好的一致性。然而,随着测试时间或热循环变得更长或更长时间,由于氧化,蠕变和残余应力引起的损伤,实验结果开始与预测值大相径庭。利用有效应力的损伤力学概念,可以进一步提高长期预测与实验结果的一致性。确定了聚酰亚胺复合材料的氧化,物理老化和化学老化机理。研究了老化,机械蠕变,热疲劳和相关损伤之间的相互作用/耦合。结果表明,循环热历史及其相互作用可能导致进一步的性能下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号