首页> 外文学位 >Weather, landscape structure, and the population ecology of a threatened butterfly, Euphydryas editha bayensis.
【24h】

Weather, landscape structure, and the population ecology of a threatened butterfly, Euphydryas editha bayensis.

机译:天气,景观结构和濒危蝴蝶Euphydryas editha bayensis的种群生态。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation documents population responses of the threatened Bay checkerspot butterfly, Euphydryas editha bayensis, in topographically complex habitat, and relates the responses to mechanisms driven by variable phenology of the butterfly and its hostplants. Using a Geographic Information System (GIS), we built terrain models and calculated insolation across slopes to quantify the dominant ecological gradient in the habitat. From 1985-96 at a 100 ha site, larval numbers ranged from 35,000 to 900,000. Four consecutive drought years (1987 to 1990) led to a 95% decrease in numbers. The distribution of larvae along the insolation gradient also changed--when numbers increased, the larval distribution shifted towards warmer slopes, and when numbers decreased, the distribution shifted toward cooler slopes. Cooler slopes provided refugia from the drought. Larval surveys across thousand of hectares from 1992-96 showed that larval densities in areas 500 meters apart fluctuated asynchronously.; Changes in larval numbers at the 100 ha site were predicted by the amount of time between peak adult flight and hostplant senescence, indicating that weather acts via phenology to produce population responses. We implemented a model of postdiapause development on the GIS, which can assess the combined impacts of weather and larval distributions on adult emergence dates. Under the same weather year, the different observed larval distributions at Kirby Canyon could alter the peak flight date by 12 days. Infrared thermometer measurements were used to quantify grassland topoclimates and calibrate a model of plant phenology. Hostplant phenology is largely controlled by temperature and insolation, and the time to senescence after flowering is strongly influenced by mean April air temperatures. The phenological models allow for explicit consideration of the impacts of climate change on phenology in complex terrain. The interactions between yearly weather, larval distributions, and hostplant phenology can lead to asynchronous dynamics across continuous habitat. Large, continuous, topographically diverse habitats provide the best chance for persistence of the butterfly. Because many species of insects depend on precise timing of their life cycles with host resources, the monitoring techniques, modeling exercises, and synthesis presented here may have broad applications for conservation and pest management.
机译:本论文记录了地形复杂的栖息地中濒临灭绝的Bay Checkerspot蝴蝶Euphydryas editha bayensis的种群响应,并将该响应与蝴蝶及其寄主植物物候变化驱动的机制相关。使用地理信息系统(GIS),我们建立了地形模型并计算了斜坡上的日照量,以量化栖息地的主要生态梯度。从1985-96年开始,在100公顷的土地上,幼虫数量从35,000到900,000不等。连续四个干旱年(1987年至1990年)导致干旱数量减少了95%。幼虫在日照梯度上的分布也发生了变化-当数量增加时,幼虫的分布向温暖的斜坡移动,而当数量减少时,幼虫的分布向较冷的斜坡移动。凉爽的山坡为干旱提供了避难所。 1992-96年间对数千公顷的幼虫进行的调查显示,相距500米的区域的幼虫密度是异步波动的。通过成年高峰飞行和寄主植物衰老之间的时间量来预测100公顷处的幼虫数量变化,表明天气是通过物候学产生种群响应的。我们在GIS上实施了滞后性发展模型,该模型可以评估天气和幼虫分布对成年出现日期的综合影响。在同一天气年份,在柯比峡谷观察到的不同幼虫分布可能会使高峰飞行日期改变12天。红外测温仪用于量化草原的气候变化并校准植物物候模型。寄主植物的物候在很大程度上受温度和日晒的控制,开花后到衰老的时间受到平均四月气温的强烈影响。物候模型可以明确考虑气候变化对复杂地形中物候的影响。年度天气,幼虫分布和寄主植物物候之间的相互作用可以导致连续生境之间的异步动态。大型,连续,地形多样的栖息地为蝴蝶的持久性提供了最佳机会。由于许多昆虫物种都依赖于宿主资源精确地决定其生命周期,因此此处介绍的监测技术,建模练习和合成方法在保护和害虫管理中可能具有广泛的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号