首页> 外文学位 >Nanostructured catalytic and magnetic materials: Sonochemical synthesis and characterization.
【24h】

Nanostructured catalytic and magnetic materials: Sonochemical synthesis and characterization.

机译:纳米结构的催化和磁性材料:声化学合成和表征。

获取原文
获取原文并翻译 | 示例

摘要

Sonochemistry arises from acoustic cavitation; the formation, growth, and implosive collapse of bubbles in a liquid. The implosive collapse of bubble generates localized hot spots, with temperatures of {dollar}sim{dollar}5000 K, pressures of {dollar}sim{dollar}1800 atm, and cooling rates that exceed {dollar}10sp{lcub}10{rcub}{dollar} K/s. Using these extreme conditions, we have developed a new synthetic technique for the synthesis of nanostructured materials.; Sonochemial decomposition of molybdenum hexacarbonyl produced nanostructured metal carbide. After thermal treatment, pure molybdenum carbide without oxygen or carbon contamination was produced. The material consists of highly porous aggregates of 2-3 nm sized particles with very a high total surface area (130 m{dollar}sp2{dollar}/g). These carbides are excellent dehydrogenation catalysts with selectivity and activity comparable to Pt.; Nanostructured metals (Fc and Co) and alloys (Fe-Co) have been synthesized by sonochemical decomposition of volatile organometallic precursors (Fe(CO){dollar}sb5{dollar} and Co(CO){dollar}sb3{dollar}(NO)). The sonochemically prepared Fe, Co, and Fe-Co powders have high catalytic activity for the dehydrogenation and hydrogenolysis of cyclohexane. Compared to the conventionally prepared Fe-Co alloys, the sonochemically prepared Fe-Co alloys have much higher catalytic selectivities for the dehydrogenation of cyclohexane to benzene, with 1:1 ratio Fe-Co alloys having selectivities as high as 100%. A carbonaceous deposit on the surfaces of sonochemically prepared catalysts is at least one of the reasons causing the higher dehydrogenation selectivity.; Nanometer iron and cobalt particles dispersed in polyvinylpyrrolidone (PVP) matrix has been synthesized by sonochemical decomposition of Fe(CO){dollar}sb5{dollar} and Co(CO){dollar}sb3{dollar}(NO). Transmission electron micrographs show that these particles range in size from 3 to 8 nm. Electron microdiffraction revealed that the particles are amorphous, and after in situ crystallization these particles become bcc iron and fcc Co. Magnetic measurements revealed that these nanometer iron particles are superparamagnetic with a saturation mgnetization of 100 emu/g at 290K. Cobalt colloid stabilized by PVP is weakly paramagnetic but after refluxing it becomes extremely soft ferromagnetic with 51 saturation magnetization of 160 emu/g.; The sonochemical decomposition of molybdenum hexacarbonyl in the presence of sulfur generated nanostructured molybdenum sulfide. The materials consist of {dollar}<{dollar}50 nm sized particles with a surface area in excess of 150 m{dollar}sp2{dollar}/g.
机译:声化学是由声空化引起的。液体中气泡的形成,增长和内爆性破裂。气泡的爆炸性破裂会产生局部热点,其温度为{dollar} sim {dollar} 5,000 K,{dollar} sim {dollar} 1800 atm的压力以及超过{dollar} 10sp {lcub} 10 {rcub的冷却速率} {dollar} K / s。在这些极端条件下,我们开发了一种用于合成纳米结构材料的新合成技术。六羰基钼的声化学分解产生纳米结构的金属碳化物。热处理后,生产出无氧或碳污染的纯碳化钼。该材料由2-3 nm大小的高度多孔聚集体组成,具有非常高的总表面积(130 m {dollar} sp2 {dollar} / g)。这些碳化物是极好的脱氢催化剂,其选择性和活性可与铂媲美。纳米结构的金属(Fc和Co)和合金(Fe-Co)是通过声波分解挥发性有机金属前体(Fe(CO){dol} sb5 {dollar}和Co(CO){dollar} sb3 {dollar}(NO ))。超声化学制备的Fe,Co和Fe-Co粉末对环己烷的脱氢和氢解具有很高的催化活性。与常规制备的Fe-Co合金相比,声化学制备的Fe-Co合金对于环己烷脱氢为苯具有更高的催化选择性,其中比例为1:1的Fe-Co合金具有高达100%的选择性。声化学制备的催化剂表面上的碳沉积物是引起较高的脱氢选择性的至少一个原因。通过Fe(CO){sb5 {dollar}和Co(CO){sb3 {dollar}(NO))的声化学分解合成了分散在聚乙烯吡咯烷酮(PVP)基质中的纳米铁和钴颗粒。透射电子显微照片显示,这些颗粒的尺寸范围为3至8 nm。电子微衍射显示该颗粒为非晶态,在原位结晶后,这些颗粒变为bcc铁和fccCo。磁测量表明,这些纳米铁颗粒为超顺磁性,在290K时的饱和磁化强度为100 emu / g。用PVP稳定的钴胶体是弱顺磁性的,但回流后变成极软的铁磁性,其51饱和磁化强度为160 emu / g。六羰基钼在硫的存在下声化学分解生成纳米结构的硫化钼。该材料由{dollar} <{dollar} 50 nm大小的颗粒组成,其表面积超过150 m {dollar} sp2 {dollar} / g。

著录项

  • 作者

    Hyeon, Taeghwan.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Chemistry Inorganic.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号