首页> 外文学位 >Impact of fatigue microcracks on the application of aluminum-silicon carbide composites in unified life cycle engineering.
【24h】

Impact of fatigue microcracks on the application of aluminum-silicon carbide composites in unified life cycle engineering.

机译:疲劳微裂纹对铝-碳化硅复合材料在统一生命周期工程中的应用的影响。

获取原文
获取原文并翻译 | 示例

摘要

Advances in the reliability of engineering materials are dependent upon the ability to predict and detect the presence of critically-sized flaws prior to the next inspection opportunity. It is the role of fracture mechanics and nondestructive evaluation (NDE) to provide these capabilities. In advanced materials such as Al-SiC composites, however, fatigue failure under high stress is governed by the nucleation and growth of distributed "microcracks". These microcracks have growth behaviors not well-described using linear elastic fracture mechanics (LEFM) methods such as the Paris equation and are often much smaller than the detection threshold of conventional NDE techniques. The "fatal" crack in Al-SiC composites can form when several microcracks link up near the end of the fatigue life. Coupled with the reduced ductility of these materials, it spends as little as 5 percent of the total life as a detectable crack. The difficulties that arise in applying unified life cycle engineering (ULCE) to Al-SiC composites, therefore, are that for most of the fatigue life microcracks grow in manners not easily characterized by LEFM and are too small to detect by NDE. By the time growth can be described using LEFM and a crack can be detected, failure is imminent. To circumvent these obstacles to the safe use of Al-SiC composites, this study presents a reliability strategy based on tracking the evolution of entire microcrack distributions rather than just single cracks. Experimental data on the growth behavior of microcracks within the distributions are obtained from surface replicas of smooth specimens of 2xxx-type Al-SiC composites. The data serves as the foundation for a Monte Carlo simulation developed to reconstruct the microcrack length distributions. Such information allows reliability inspections to be scheduled when critically-sized cracks are expected to emerge from the population of microcracks. Works in NDE are also pursued to detect the effects of microcrack populations, as opposed to individual ones, on eddy current probe impedance signals. The reliability philosophy presented here is shown to encompass not only Al-SiC composites, but a very different metallic material (304 stainless steel) in which distributed microcracking plays a role in fatigue failure.
机译:工程材料可靠性的提高取决于在下一次检查之前预测和检测临界尺寸缺陷的存在的能力。断裂力学和无损评估(NDE)的作用就是提供这些功能。但是,在高级材料中,例如Al-SiC复合材料,高应力下的疲劳失效是由分布的“微裂纹”的形核和生长决定的。这些微裂纹的生长行为无法通过线性弹性断裂力学(LEFM)方法(如Paris方程)很好地描述,并且通常比常规NDE技术的检测阈值小得多。当几个微裂纹在疲劳寿命即将结束时连接在一起时,会在Al-SiC复合材料中形成“致命”裂纹。加上这些材料的延展性降低,它花费的总寿命仅为可检测裂缝的5%。因此,将统一的生命周期工程(ULCE)应用于Al-SiC复合材料时出现的困难在于,对于大多数疲劳寿命而言,微裂纹以LEFM不容易表征的方式生长,并且尺寸很小,无法通过NDE进行检测。通过使用LEFM可以描述生长的时间,并且可以检测到裂纹,即将出现故障。为了规避安全使用Al-SiC复合材料的这些障碍,本研究提出了一种可靠性策略,该策略基于跟踪整个微裂纹分布而不是单个裂纹的演变。从分布的2xxx型Al-SiC复合材料的光滑试样的表面复制品中获得了微裂纹在分布内的生长行为的实验数据。数据是开发用于重建微裂纹长度分布的蒙特卡洛模拟的基础。当预期从微裂纹群中出现临界尺寸的裂纹时,此类信息可以安排可靠性检查。 NDE中的工作还旨在检测微裂纹种群(而不是单个个体)对涡流探头阻抗信号的影响。此处显示的可靠性原理不仅包含Al-SiC复合材料,还包含一种非常不同的金属材料(304不锈钢),其中分布式微裂纹在疲劳失效中起作用。

著录项

  • 作者

    Chen, Edward Yen-Ming.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 372 p.
  • 总页数 372
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

  • 入库时间 2022-08-17 11:49:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号