首页> 外文学位 >Water and methanol transport through polymer electrolytes in elevated temperature fuel cells.
【24h】

Water and methanol transport through polymer electrolytes in elevated temperature fuel cells.

机译:水和甲醇通过高温燃料电池中的聚合物电解质传输。

获取原文
获取原文并翻译 | 示例

摘要

Elevated temperatures will minimize the effects of catalyst poisoning and enhance the catalyst activity in methanol/air proton exchange membrane (PEM) fuel cells. In order to develop an elevated temperature PEM fuel cell, a stable polymer electrolyte membrane with high ionic conductivity at the operating temperature is required. Such a membrane should also possess desirable properties including negligible electronic conductivity, an ionic transference number of the reacting ion (proton) which tends to one, and low methanol permeability to increase the fuel efficiency.; This study addresses the sorption and transport properties of water and methanol vapor in polymer electrolytes, that are required for rational design of elevated temperature fuel cells. Specifically, water and methanol vapor sorption, solubility, diffusivity, permeability coefficients, electro-osmotic drag coefficient (representing the number of water molecules dragged with each migrating proton) as well as the transference number were measured as a function of water (or methanol) activity at temperatures up to 200{dollar}spcirc{dollar}C. Comparisons and distinctions among the PBI (polybenzimidazole), the Nafion{dollar}spcircler{dollar}/H{dollar}rmsb3POsb4,{dollar} and conventional Nafion{dollar}spcircler{dollar}117 polymer electrolytes are provided.; Based on these properties, a transport model applicable to elevated temperature direct methanol/air PEM fuel cell is derived and solved numerically using a flexible polyhedron search. The model focuses on water management, fuel utilization and ohmic loss of the membrane-electrodes assembly. The model results can be used to maintain an optimal chemical species distribution in the PEM fuel cell, provide sufficient proton conductivity in the membrane, and avoid cathode flooding and anode dehydration, thus assuring long term PEM fuel cell performance.
机译:升高的温度将使催化剂中毒的影响最小化,并提高甲醇/空气质子交换膜(PEM)燃料电池中的催化剂活性。为了开发高温PEM燃料电池,需要在工作温度下具有高离子传导性的稳定的聚合物电解质膜。这种膜还应具有理想的性能,包括可忽略的电子传导性,趋向于一个的反应离子(质子)的离子转移数和低甲醇渗透性以提高燃料效率。这项研究解决了聚合物电解质中水和甲醇蒸气的吸附和传输特性,这是合理设计高温燃料电池所必需的。具体而言,根据水(或甲醇)的功能,测量了水和甲醇的蒸气吸附,溶解度,扩散系数,渗透系数,电渗阻力系数(代表每个迁移质子所拖动的水分子的数量)以及转移数。在高达200 {dollar} spcirc {dollar} C的温度下仍保持活性。提供了PBI(聚苯并咪唑),Nafion {dollar} / H {dollar} rmsb3POsb4,{dollar}和常规的Nafion {dollar} spcircler {dollar} 117聚合物电解质之间的比较和区别。基于这些特性,得出了适用于高温直接甲醇/空气PEM燃料电池的运输模型,并使用柔性多面体搜索对其进行了数值求解。该模型着重于水管理,燃料利用率和膜电极组件的欧姆损耗。模型结果可用于维持PEM燃料电池中的最佳化学物质分布,在膜中提供足够的质子传导性,避免阴极溢流和阳极脱水,从而确保PEM燃料电池的长期性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号