首页> 外文学位 >Fracture in functionally gradient materials: Static and dynamic analyses.
【24h】

Fracture in functionally gradient materials: Static and dynamic analyses.

机译:功能梯度材料中的断裂:静态和动态分析。

获取原文
获取原文并翻译 | 示例

摘要

A theoretical and numerical treatment of a finite crack in a medium with spatially varying material properties is provided in this work. The variation of material properties is in a direction perpendicular to the crack surfaces. At first, response of an interfacial layer which is made of functionally gradient materials subjected to an anti-plane shear impact load is considered. Laplace and Fourier transforms are applied to reduce this mixed boundary value problem to a system of dual integral equations which in turn will be reduced to a standard Fredholm integral equation of the second kind. The Fredholm integral equation is solved in the Laplace transform plane numerically. The time inversion is accomplished by a numerical scheme. The dynamic stress intensity factor is found to either increase or decrease with the crack length to layer thickness depending on the relative magnitudes of the material properties of the adjoining layer.; Next, a numerical treatment of an interfacial crack subjected to an in-plane mechanical loading is provided. The current investigation studies cracks in an essentially compressive environment in which the crack faces are in contact and frictional effects play an important role. A simple and efficient, iterative finite element technique for solving frictional contact problems under small deformations is described. Stress intensity factors and energy release rates are calculated by using numerical crack flank displacement and two term parameter techniques. Numerical examples are provided to verify the technique and to show the effect of the thickness of the interfacial layer, the coefficient of friction, and the material properties upon the stress intensity factors and energy release rates of the crack.; Frictional contact problem of cracks in functionally gradient materials under combined mechanical and thermal loadings is studied. Both steady-state and transient thermal stresses are considered. Due to the nonuniform temperature distribution in the transient thermal field, the possibility of heat transfer across the crack surfaces in the contact region exists. The heat transfer across the crack surfaces results in a two-way coupling between the thermal and mechanical fields. Stress intensity factors are calculated. The effect of the coefficient of friction, crack length, and material properties of the interfacial layer on the stress intensity factors in the mixed mode is studied. From the results it is revealed that the stress intensity factors are reduced considerably when functionally gradient material is used as an interfacial layer instead of homogeneous materials.; Finally, a nonlinear theory on the statics of multilayered shells, including transverse effects and delamination of general shapes, is studied. Delaminations are included by introducing new vectors which we name as conjugate directors. (Abstract shortened by UMI.)
机译:在这项工作中,提供了一种在空间上具有变化的材料特性的介质中有限裂纹的理论和数值处理方法。材料性能的变化是在垂直于裂纹表面的方向上进行的。首先,考虑由功能梯度材料制成的界面层承受反平面剪切冲击载荷的响应。应用拉普拉斯(Laplace)和傅里叶(Fourier)变换将这个混合边值问题减少到一个对偶积分方程组,该系统将被简化为第二类标准Fredholm积分方程。 Fredholm积分方程在Laplace变换平面中得到数值求解。时间反转是通过数值方案完成的。发现动态应力强度因子随裂纹长度到层厚度的增加或减少而定,具体取决于邻接层材料性能的相对大小。接下来,对受到面内机械载荷的界面裂纹进行数值处理。目前的研究是在本质上是压缩的环境中研究裂纹,在该环境中,裂纹面相互接触,摩擦作用起着重要的作用。描述了一种用于解决小变形情况下的摩擦接触问题的简单有效的迭代有限元技术。应力强度因子和能量释放速率是通过使用数值裂纹侧面位移和两项参数技术来计算的。提供了数值示例,以验证该技术并显示界面层的厚度,摩擦系数和材料特性对裂纹的应力强度因子和能量释放速率的影响。研究了功能梯度材料在机械载荷和热载荷作用下的摩擦接触问题。稳态和瞬态热应力均被考虑。由于瞬态热场中温度分布不均匀,因此存在在接触区域中跨裂纹表面传热的可能性。跨裂纹表面的热传递导致热场和机械场之间的双向耦合。计算应力强度因子。研究了混合模式下界面层的摩擦系数,裂纹长度和材料性能对应力强度因子的影响。从结果表明,当功能梯度材料代替均匀材料用作界面层时,应力强度因子大大降低。最后,研究了多层壳静力学的非线性理论,包括横向效应和一般形状的分层。通过引入新的向量(我们称为共轭导向器)来包括分层。 (摘要由UMI缩短。)

著录项

  • 作者

    Babayi, Reza.;

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 p.5062
  • 总页数 271
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号