首页> 外文学位 >Modeling particle growth and morphology of impact polypropylene produced in the gas phase.
【24h】

Modeling particle growth and morphology of impact polypropylene produced in the gas phase.

机译:模拟气相中产生的冲击聚丙烯的颗粒生长和形态。

获取原文
获取原文并翻译 | 示例

摘要

A gas phase reactor system using on-line FTIR for controlled composition olefin polymerization experiments with gaseous or liquid monomers has been designed and constructed in this work. Using this equipment, a comprehensive study of the kinetics, particle growth and morphological development of impact polypropylene produced in-situ with a TiCl{dollar}sb4{dollar}/MgCl{dollar}sb2{dollar} catalyst has been conducted. The catalyst was found exhibiting a decay type behavior for ethylene and propylene homopolymerization but an activation effect was observed when both monomers were present together. Hydrogen was also seen to boost the rate of propylene polymerization but not ethylene, and increased the rate of catalyst deactivation during propylene polymerization. Microscopy analysis of the particles over a range of copolymer content (up to 70 wt. %), copolymer composition, reaction temperature and hydrogen levels reveal how the copolymer phase segregates from the homopolymer and grows within the homopolymer matrix. A model for particle growth is proposed. A computer model for the study of the effects of changing morphology for polyolefins produced in multistage processes has been developed and used to investigate the role of monomer diffusion limitations during polymerization using the experimental data found in this work. To study the effects of residence time distribution in multistage continuous processes for impact polypropylene, population balance models have been developed for multistage processes consisting of gas and liquid phase reactors. The effects of catalyst size distribution and monomer diffusion limitations can be incorporated into the models. It is shown that commercial impact polypropylene consists of a broad distribution of polymer properties as a consequence of reactor residence time distribution issues. Implications for product homogeneity, particle sticking and process productivity are discussed.
机译:在这项工作中,已经设计并构建了一种气相反应器系统,该系统使用在线FTIR进行气态或液态单体的受控组成的烯烃聚合实验。使用该设备,对用TiCl {spr4} sb4 {dollar} / MgCl {dollar} sb2 {dollar}催化剂就地生产的抗冲聚丙烯的动力学,颗粒生长和形态发展进行了全面研究。发现该催化剂对乙烯和丙烯均聚表现出衰减型行为,但是当两种单体一起存在时观察到活化作用。氢也能提高丙烯聚合速率,但不能提高乙烯聚合速率,并能提高丙烯聚合过程中催化剂的失活速率。在共聚物含量(最高70%(重量)),共聚物组成,反应温度和氢含量范围内的显微镜分析表明,共聚物相如何从均聚物中分离出来并在均聚物基质中生长。提出了颗粒生长的模型。已经开发了一种计算机模型,用于研究在多步工艺中生产的聚烯烃的形态变化的影响,并使用这项工作中发现的实验数据来研究聚合过程中单体扩散限制的作用。为了研究冲击聚丙烯的多级连续工艺中停留时间分布的影响,已经为由气相和液相反应器组成的多级工艺开发了种群平衡模型。催化剂尺寸分布和单体扩散限制的影响可以纳入模型。结果表明,由于反应器停留时间分布问题,商业上的冲击聚丙烯由广泛的聚合物性能分布组成。讨论了对产品均匀性,颗粒粘附和工艺生产率的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号