首页> 外文学位 >A molecular-beam mass spectrometry study and modeling of ethylene flames.
【24h】

A molecular-beam mass spectrometry study and modeling of ethylene flames.

机译:分子束质谱研究和乙烯火焰建模。

获取原文
获取原文并翻译 | 示例

摘要

Molecular-beam mass spectrometry (MBMS) has been used to measure concentration profiles for stable and radical species in low-pressure, one-dimensional flames. Temperature measurements with ceramic-coated-thermocouples, area expansion ratio measurements with hot-wire-anemometry have been made, along with concentration measurements with MBMS, to characterize ethylene flames fully. The fuel-rich flame had a composition of 19.4 mol % {dollar}rm Csb2Hsb4,{dollar} 30.6 mol % O{dollar}sb2,{dollar} and 50.0 mol % Ar {dollar}(phi=1.9).{dollar} It was operated at a pressure of 2.67 kPa (20.00 Torr) with an unburned burner gas velocity of 62.5 cm/s (300 K). Mole fraction profiles for 42 species were measured in this flame. The fuel-lean flame had a composition of 8.6 mol % {dollar}rm Csb2Hsb4,{dollar} 34.5 mol % O{dollar}sb2{dollar} and 56.9 mol % Ar and an equivalence ratio, {dollar}phi,{dollar} of 0.75. This flame had a burner velocity of 30.0 cm/s (300K) and was operated at 4.00 kPa (30.00 Torr). Concentration profiles for 22 species and upper-bound measurements for seven species were made in the fuel-lean flame.; Species flux balance calculations were used to obtain rate coefficients for reactions important in the combustion process. C{dollar}rmsb2Hsb4{dollar} destruction chemistry has been examined extensively and rate coefficient for key reactions have been measured:{dollar}{dollar}eqalign{lcub}rm Csb2Hsb4+H=Csb2Hsb3+Hsb2&quad{lcub}it k/{rcub}(rm cmsp3molsp{lcub}-1{rcub}ssp{lcub}-1{rcub})=cr &quad3.70times10sp7 times Tsp{lcub}2.17{rcub}rm exp({lcub}-{rcub}13400/RT)cr{rcub}{dollar}{dollar}over the temperature range of 1850-2150 K and{dollar}{dollar}eqalign{lcub}rm Csb2Hsb4+OH=Csb2Hsb3+Hsb2O&quad{lcub}it k/{rcub}(rm cmsp3molsp{lcub}-1{rcub}ssp{lcub}-1{rcub})=cr &quad5.53times10sp5times Tsp{lcub}2.31{rcub}rm exp({lcub}-{rcub}2900/RT)cr{rcub}{dollar}{dollar}for temperatures between 1400-1800 K. Rate constants for vinyl decomposition reaction {dollar}rm Csb2Hsb3=Csb2Hsb2+H{dollar} were also measured and interpreted in terms of high-pressure and low-pressure limits. This analysis indicated the possibilities of a higher decomposition rate constant for vinyl than has been reported before or a calibration factor that is higher by nine times than the calibration performed by relative ionization cross section method. Formation and destruction chemistry of {dollar}rm Csb2Hsb2{dollar} and CH{dollar}sb3{dollar}CHO species was also analyzed.; The data have been compared to model predictions from two different reaction sets and from a reaction set being developed as part of this work. The predictions from the new reaction set compares best with the data for many stable and radical species, but the agreement for C{dollar}sb3{dollar} and heavier species is not very good from any of the three sets. The new set also eliminated a general shift of the predictions from the literature sets which predicted profiles to be 1-3 mm closer to the burner than the experimental data.
机译:分子束质谱(MBMS)已用于测量低压一维火焰中稳定和自由基物种的浓度分布。进行了陶瓷涂层热电偶的温度测量,热线电流测定法的面积膨胀率测量以及MBMS的浓度测量,以充分表征乙烯火焰。富含燃料的火焰的组成为19.4摩尔%rm Csb2Hsb4、30.6摩尔%Osb2、5美元和50.0摩尔%Ar(phi = 1.9)。它在2.67 kPa(20.00 Torr)的压力下运行,未燃烧的燃烧器气体速度为62.5 cm / s(300 K)。在该火焰中测量了42种物种的摩尔分数分布。贫燃料的火焰的组成为8.6摩尔%{rm} Csb2Hsb4,{美元} 34.5摩尔%O {美元} sb2 {美元}和56.9摩尔%Ar和当量比{美元} phi,{美元} 0.75。该火焰的燃烧器速度为30.0 cm / s(300K),在4.00 kPa(30.00 Torr)下运行。在稀燃火焰中进行了22种物质的浓度曲线和7种物质的上限测量。物种通量平衡计算用于获得在燃烧过程中重要反应的速率系数。已对C {dollar} rmsb2Hsb4 {dollar}破坏化学进行了广泛研究,并测量了关键反应的速率系数:{dollar} {dollar} eqalign {lcub} rm Csb2Hsb4 + H = Csb2Hsb3 + Hsb2&quad {lcub} it k / {rcub }(rm cmsp3molsp {lcub} -1 {rcub} ssp {lcub} -1 {rcub})= cr&quad3.70times10sp7倍Tsp {lcub} 2.17 {rcub} rm exp({lcub}-{rcub} 13400 / RT)在1850-2150 K的温度范围内{crub} {dollar} {dollar}和{dollar} {dollar} eqalign {lcub} rm Csb2Hsb4 + OH = Csb2Hsb3 + Hsb2O&quad {lcub} it k / {rcub}(rm cmsp3molsp {lcub} -1 {rcub} ssp {lcub} -1 {rcub})= cr&quad5.53times10sp5times Tsp {lcub} 2.31 {rcub} rm exp({lcub}-{rcub} 2900 / RT)cr {rcub} {对于1400-1800 K之间的温度,美元{美元}。乙烯基分解反应的速率常数{rm Csb2Hsb3 = Csb2Hsb2 + H {美元}也被测量并根据高压和低压极限来解释。该分析表明,乙烯基分解速率常数可能比以前报道的更高,或者校准因子比通过相对电离截面法执行的校准高9倍。还分析了{rm} Csb2Hsb2 {dollar}和CH {dollar} sb3 {dollar} CHO物种的形成和破坏化学。将该数据与来自两个不同反应组的模型预测进行了比较,并将数据作为该工作的一部分进行了开发。来自新反应集的预测与许多稳定和自由基物种的数据比较最佳,但在这三个集合中,C {dollar} sb3 {dollar}和较重物种的一致性都不是很好。新的设置还消除了从文献中得出的预测值的一般偏移,该预测值预测轮廓比实验数据更接近燃烧器1-3 mm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号