首页> 外文学位 >Neurally inspired silicon learning: From synapse transistors to learning arrays.
【24h】

Neurally inspired silicon learning: From synapse transistors to learning arrays.

机译:启发性的硅学习方法:从突触晶体管到学习阵列。

获取原文
获取原文并翻译 | 示例

摘要

A computation is an operation that can be performed by a physical machine. We are familiar with digital computers: Machines based on a simple logic function (the binary NOR) and optimized for manipulating numeric variables with high precision. Other computing machines exist: The neurocomputer, the analog computer, the quantum computer, and the DNA computer all are known. Neurocomputers--defined colloquially as computing machines comprising nervous tissue--exist; that they are computers also is certain. Nervous tissue solves ill-posed problems in real time. The principles underlying neural computation, however, remain for now a mystery.; I believe that there are fundamental principles of computation that we can learn by studying neurobiology. If we can understand how biological information-processing systems operate, then we can learn how to build circuits and systems that deal naturally with real-world data. My goal is to investigate the organizational and adaptive principles on which neural systems operate, and to build silicon integrated circuits that compute using these principles. I call my approach silicon neuroscience: the development of neurally inspired silicon-learning systems.; I have developed, in a standard CMOS process, a family of single-transistor devices that I call synapse transistors. Like neural synapses, synapse transistors provide nonvolatile analog memory, compute the product of this stored memory and the applied input, allow bidirectional memory updates, and simultaneously perform an analog computation and determine locally their own memory updates. I have fabricated a synaptic array that affords a high synapse-transistor density, mimics the low power consumption of nervous tissue, and performs both fast, parallel computation and slow, local adaptation. Like nervous tissue, my array simultaneously and in parallel performs an analog computation and updates the nonvolatile analog memory.; Although I do not believe that a single transistor can model the complex behavior of a neural synapse completely, my synapse transistors do implement a local learning function. I consider their development to be a first step toward achieving my goal of a silicon learning system.
机译:计算是可以由物理机器执行的操作。我们熟悉数字计算机:基于简单逻辑功能(二进制NOR)并经过优化以高精度处理数字变量的机器。还存在其他计算机:神经计算机,模拟计算机,量子计算机和DNA计算机都是已知的。存在通俗地定义为包含神经组织的计算机的神经计算机。他们肯定是计算机。神经组织可以实时解决不适定的问题。然而,神经计算的基本原理至今仍是一个谜。我相信,有一些基本的计算原理可以通过学习神经生物学来学习。如果我们能够了解生物信息处理系统的运行方式,那么我们将学习如何构建自然处理现实世界数据的电路和系统。我的目标是研究神经系统运行的组织和自适应原理,并构建使用这些原理进行计算的硅集成电路。我称我的方法为硅神经科学:开发受神经启发的硅学习系统。我已经用标准的CMOS工艺开发了一系列我称为突触晶体管的单晶体管器件。像神经突触一样,突触晶体管提供非易失性模拟内存,计算此存储内存和所施加输入的乘积,允许双向内存更新,并同时执行模拟计算并本地确定其自身的内存更新。我制造了一个突触阵列,该阵列提供高的突触晶体管密度,模仿神经组织的低功耗,并执行快速,并行计算和慢速局部适应。像神经组织一样,我的阵列可以同时并行执行模拟计算并更新非易失性模拟存储器。尽管我不相信单个晶体管可以完全模拟神经突触的复杂行为,但我的突触晶体管确实实现了局部学习功能。我认为他们的发展是实现我的硅学习系统目标的第一步。

著录项

  • 作者

    Diorio, Chris.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号