首页> 外文学位 >Quantum cryptography in real-life applications: Assumptions and security.
【24h】

Quantum cryptography in real-life applications: Assumptions and security.

机译:实际应用中的量子密码术:假设和安全性。

获取原文
获取原文并翻译 | 示例

摘要

Quantum cryptography, or quantum key distribution (QKD), provides a means of unconditionally secure communication. The security is in principle based on the fundamental laws of physics. Security proofs show that if quantum cryptography is appropriately implemented, even the most powerful eavesdropper cannot decrypt the message from a cipher.A perfect single-photon source is often assumed in many security proofs. However, a weak coherent source is widely used in a real-life QKD implementation. Decoy state protocols have been proposed as a novel approach to dramatically improve the performance of a weak coherent source based QKD implementation without jeopardizing its security. Here, we present the first experimental demonstrations of decoy state protocols. Our experimental scheme was later adopted by most decoy state QKD implementations.In the security proof of decoy state protocols as well as many other QKD protocols, it is widely assumed that a sender generates a phase-randomized coherent state. This assumption has been enforced in few implementations. We close this gap in two steps: First, we implement and verify the phase randomization experimentally second, we prove the security of a QKD implementation without the coherent state assumption.In many security proofs of QKD, it is assumed that all the detectors on the receiver's side have identical detection efficiencies. We show experimentally that this assumption may be violated in a commercial QKD implementation due to an eavesdropper's malicious manipulation. Moreover, we show that the eavesdropper can learn part of the final key shared by the legitimate users as a consequence of this violation of the assumptions.The implementations of quantum crypto-systems in real life may not fully comply with the assumptions made in the security proofs. Such discrepancy between the experiment and the theory can be fatal to the security of a QKD system. In this thesis we address a number of these discrepancies.
机译:量子密码术或量子密钥分发(QKD)提供了无条件安全通信的方法。安全原则上是基于物理学的基本定律。安全证明表明,如果适当地实施了量子加密,即使是功能最强大的窃听者也无法解密来自密码的消息。许多安全证明中通常都假设使用了完美的单光子源。但是,在现实生活中的QKD实现中广泛使用了弱相干源。诱骗状态协议已被提议为一种新颖的方法,可以在不损害其安全性的前提下显着提高基于弱相干源的QKD实现的性能。在这里,我们展示诱骗状态协议的第一个实验演示。我们的实验方案后来被大多数诱骗状态QKD实现采用。在诱骗状态协议以及许多其他QKD协议的安全性证明中,广泛假设发送方会生成相位随机的相干状态。此假设已在少数实施中实施。我们分两步缩小这一差距:首先,我们通过实验实现和验证相位随机化;其次,我们在没有相干状态假设的情况下证明了QKD实现的安全性。在QKD的许多安全性证明中,都假设所有检测器都位于接收方具有相同的检测效率。我们通过实验表明,由于窃听者的恶意操纵,该假设可能在商业QKD实现中被违反。此外,我们证明窃听者可以从合法用户共享的最终密钥中学习到部分由于违反假设而导致的结果。现实生活中的量子密码系统的实现可能不完全符合安全性中的假设证明。实验与理论之间的这种差异可能对QKD系统的安全性是致命的。在本文中,我们解决了许多这些差异。

著录项

  • 作者

    Zhao, Yi.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Physics Quantum.Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号