首页> 外文学位 >Improving space-time adaptive processing (STAP) radar performance in nonhomogeneous clutter.
【24h】

Improving space-time adaptive processing (STAP) radar performance in nonhomogeneous clutter.

机译:改善非均匀杂波中的时空自适应处理(STAP)雷达性能。

获取原文
获取原文并翻译 | 示例

摘要

We are primarily interested in radar signal detection, using STAP technique, in a nonhomogeneous noise background which has unknown covariance information. We should know that nonhomogeneous data, once joined to the covariance matrix estimation, will cause the degradation of STAP performance. To this end, the purpose of this dissertation is to find solutions to reduce the STAP performance degradation caused by the nonhomogeneous data.; We first discuss what nonhomogeneity is and its effects on STAP. Nonhomogeneity will cause the SCNR loss via the filtering, and the CFAR loss via the estimation of the threshold. These two losses are derived from a bad covariance matrix estimation because the weighting vector of STAP is {dollar}{lcub}bf w{rcub}=u{lcub}bf R{rcub}{lcub}bf{lcub}sp{lcub}-1{rcub}s{rcub}{rcub}.{dollar} Thus, the covariance matrix estimation plays a decisive role regarding the reduction of the STAP performance degradation.; We introduce two methods, sample selection and data weighting, to handle nonhomogeneous data. Sample selection is a pre-STAP data processor in which we aim at screening the nonhomogeneous data before forming the covariance matrix. In other words, we choose only the likely homogeneous data to gain a better covariance matrix estimation. Definitely, sample selection is appropriate for discrete type nonhomogeneity.; The covariance matrix estimation via the maximum likelihood estimate (MLE) results in an equal weighting of all sample data, which is not an especially effective approach to control non i.i.d. nonhomogeneous data. Rather, we suggest a weighted average covariance matrix estimation, in which we weight the likely nonhomogeneous data with a smaller weighting than that of the likely homogeneous data. We thereby show that both the SCNR and the CFAR losses, under the data weighting situation, can be reduced.; Moreover, we must test all secondary data, and thus know their characteristics, before we can apply either a sample selection or a data weighting, or a combination of both to the data set. Indeed, choosing a proper test algorithm for nonhomogeneity detection is critical. Consequently, we also include a comparison of three CFAR embedded algorithms, GLR, MSMI and {dollar}Tsp2,{dollar} in this dissertation.
机译:我们主要对使用STAP技术在具有未知协方差信息的非均匀噪声背景中进行雷达信号检测感兴趣。我们应该知道,非均匀数据一旦加入协方差矩阵估计,将导致STAP性能下降。为此,本文的目的是找到减少非均匀数据引起的STAP性能下降的解决方案。我们首先讨论什么是非均匀性及其对STAP的影响。非均质性将通过滤波导致SCNR损失,而通过阈值估计将导致CFAR损失。由于STAP的加权向量为{美元} {lcub} bf w {rcub} = u {lcub} bf R {rcub} {lcub} bf {lcub} sp {lcub},所以这两个损失是从差协方差矩阵估计得出的-1 {rcub} s {rcub} {rcub}。{美元}因此,协方差矩阵估计对于减少STAP性能下降起着决定性的作用。我们介绍了两种方法,样本选择和数据加权,以处理非均匀数据。样本选择是STAP之前的数据处理器,我们的目标是在形成协方差矩阵之前筛选非均匀数据。换句话说,我们仅选择可能的均质数据以获得更好的协方​​差矩阵估计。绝对地,样本选择适合离散类型的非均匀性。通过最大似然估计(MLE)进行的协方差矩阵估计导致所有样本数据的权重均等,这不是控制非i.d的特别有效的方法。非均匀数据。相反,我们建议使用加权平均协方差矩阵估计,在该估计中,我们对可能的非均质数据进行加权,而权重小于可能的均​​质数据。因此,我们表明在数据加权情况下,SCNR和CFAR的损失都可以减少。此外,在将样本选择或数据加权或两者的组合应用于数据集之前,我们必须测试所有辅助数据,从而了解其特征。确实,为非均匀性检测选择合适的测试算法至关重要。因此,本文还对三种CFAR嵌入式算法(GLR,MSMI和{dollar} Tsp2,{dollar})进行了比较。

著录项

  • 作者

    Chang, Ho-Hsuan.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:49:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号