首页> 外文学位 >Separation and circulation control on a thick blunt elliptical airfoil.
【24h】

Separation and circulation control on a thick blunt elliptical airfoil.

机译:厚钝的椭圆形机翼的分离和循环控制。

获取原文
获取原文并翻译 | 示例

摘要

Various methods of Active Flow Control (AFC) were experimentally investigated on an elliptic airfoil to improve our understanding of the flow mechanisms and identify the parameters, governing fluidic control of separation and circulation. Steady blowing, steady suction and Zero Mass Flux Forcing (ZMFF) were applied to enhance the performance of the airfoil at all possible parts of the flight envelope. All three modes of actuation were two dimensional. The unique design of the model enabled one to vary the slot-widths, their locations and their orientations, without a change of hardware. Changes in the free stream velocity, amplitudes and frequencies of the periodic forcing, or mass flow associated with the steady suction or blowing were also investigated. Wedges attached to the trailing edge of the ellipse modified the shape and sharpness of the trailing edge thus determining the Kutta condition rather than letting it be freely established by the AFC.;For steady blowing the increment of the lift coefficient scales with the momentum coefficient (Cmu), provided that the slot is thin. The lift increment generated by the blowing is adversely affected by wider slots and a deleterious effect on CL was observed at low Cmu. The lift increment was independent of Reynolds numbers of the airfoil and the jet but it depended on the slot location and orientation. An imposed Kutta condition, even when carried out by a small protuberance had a significant effect on CL. The drag was not necessarily reduced by the blowing and Cmu was not its primary scaling parameter.;Suction is much more effective than blowing at low levels of Cmu. Neither Cmu, nor volume flow coefficient, CQ, provides universal relation for suction. ZMFF is most effective in reattaching separated flow but the traditional does not provide the universal scaling for ZMFF. Much higher level of input was required to attach separated flow than to keep the flow attached.
机译:在椭圆形翼型上对各种主动流控制(AFC)方法进行了实验研究,以提高我们对流动机理的理解并确定参数,从而控制分离和循环的流体控制。采用稳定吹气,稳定吸力和零质量通量强迫(ZMFF)来增强机翼在所有包络部位的机翼性能。所有三种驱动方式都是二维的。该模型的独特设计使人们能够在不改变硬件的情况下改变插槽宽度,它们的位置和方向。还研究了自由气流的速度,周期性强迫的幅度和频率或与稳定吸力或吹风有关的质量流量的变化。附着在椭圆尾缘上的楔形物改变了尾缘的形状和清晰度,从而确定了Kutta条件,而不是让AFC自由建立它;为了稳定吹气,升力系数的增量与动量系数成比例( Cmu),前提是插槽较细。由吹气产生的升力增量受到较宽缝隙的不利影响,并且在低Cmu下观察到对CL的有害影响。升程增量与机翼和喷气流的雷诺数无关,但取决于插槽的位置和方向。施加的Kutta条件,即使是由小的隆突进行,对CL也有显着影响。吹送并不一定减少阻力,Cmu并不是其主要的缩放参数。吸力比在低水平的Cmu吹送更有效。 Cmu和体积流量系数CQ都不提供抽吸的通用关系。 ZMFF在重新连接分离的流方面最有效,但是传统的方法无法为ZMFF提供通用的缩放比例。附加分离的流所需的输入级别要比保持附加流高得多。

著录项

  • 作者

    Chen, Chunmei.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号