首页> 外文学位 >Increasing solid oxide fuel cell power densities at low temperatures using thin-film electrolytes and enhanced electrodes.
【24h】

Increasing solid oxide fuel cell power densities at low temperatures using thin-film electrolytes and enhanced electrodes.

机译:使用薄膜电解质和增强型电极,在低温下提高固体氧化物燃料电池的功率密度。

获取原文
获取原文并翻译 | 示例

摘要

Solid Oxide Fuel Cell (SOFC) power densities typically drop rapidly as the operating temperature is decreased, due to electrolyte ohmic losses and/or electrode overpotentials. In this dissertation, I describe SOFCs utilizing {dollar}<{dollar}10 {dollar}mu{dollar}m thick yttria-stabilized zirconia (YSZ) electrolytes and YSZ-YDC (Yttria Doped Ceria) bi-layer electrolytes to provide low ohmic losses. The two key factors in achieving the fully-dense films were porous substrate preparation and the use of substrate bias during electrolyte film depositions. Increasing the negative DC substrate bias {dollar}rm Vsb{lcub}S{rcub}{dollar} resulted in increasing film density and film stress. {dollar}rm Vsb{lcub}S{rcub}=75V{dollar} was chosen to yield high density without excessive film compressive stresses. Electrodes containing electronic and ionic conductors, namely Ni-YSZ anodes and (La,Sr)MnO{dollar}sb3{dollar}-YSZ cathodes, were prepared for low interfacial resistances at low operating temperatures. Their composition and structure effects on the electrode performance were investigated. The Ni-YSZ anode films--deposited by DC reactive magnetron sputtering of Ni-Zr-Y targets in Ar-O{dollar}sb2{dollar} mixtures--were porous, two-phase, and exhibited an equiaxed structure with grain sizes of {dollar}approx{dollar}35 nm. With optimal deposition conditions, very low interfacial resistances, 0.15 to 0.35 {dollar}Omega{dollar}-cm{dollar}sp2{dollar} were measured at 750{dollar}spcirc{dollar}C in {dollar}rm97%Hsb2+3%Hsb2O.{dollar} The interfacial resistance of (La,Sr)MnO{dollar}sb3{dollar}-YSZ cathode/substrates--prepared by ceramic processing--decreased with increasing the YSZ volume fraction in (La,Sr)MnO{dollar}sb3{dollar}-YSZ from 0 to 60%. Adding thin porous YDC layers on either side of the YSZ yielded much-reduced interfacial resistances at both the (La,Sr)MnO{dollar}sb3{dollar} cathodes and Ni-YSZ anodes. On the anode side, YDC promoted the charge transfer process due to its mixed conductivity. On the cathode side, the high oxygen surface exchange coefficient of YDC is believed to be the reason for the enhanced cathode performance. These cells provide higher power densities than previously reported below 750{dollar}spcirc{dollar}C, e.g. 300 and 760 mW/cm{dollar}sp2{dollar} at 600 and 750{dollar}spcirc{dollar}C, respectively (measured in 97% H{dollar}sb2{dollar} + 3% H{dollar}sb2{dollar}O and air).
机译:固体氧化物燃料电池(SOFC)的功率密度通常会由于电解液的欧姆损耗和/或电极超电势而随着工作温度的降低而迅速下降。在本文中,我描述了利用{dollar} <{dollar} 10 {dollar}μm{dollar} m厚的氧化钇稳定的氧化锆(YSZ)电解质和YSZ-YDC(氧化钇掺杂的二氧化铈)双层电解质提供低欧姆电阻的SOFC。损失。实现高密度薄膜的两个关键因素是多孔基材的制备以及在电解质薄膜沉积过程中使用基材偏压。增大直流负衬底偏压{rms Vsb {lcub} S {rcub} {dollar}会导致膜密度和膜应力增加。选择{rm} rm Vsb {lcub} S {rcub} = 75V {dol}以产生高密度而没有过多的膜压缩应力。制备了含有电子和离子导体的电极,即Ni-YSZ阳极和(La,Sr)MnO {sb3 {dollar} -YSZ阴极),以在低工作温度下实现低界面电阻。研究了它们的组成和结构对电极性能的影响。通过在Ar-O {dollar} sb2 {dollar}混合物中进行Ni-Zr-Y靶的直流反应磁控溅射沉积的Ni-YSZ阳极膜呈多孔,两相状态,并表现出等轴晶结构{美元}约{美元} 35nm。在最佳沉积条件下,非常低的界面电阻,在{sp} {rm} 97%Hsb2 + 3的条件下,在750spsp {dol} C下测得的0.15至0.35 {dol}}Ω{cm} sp2 {dol} %Hsb2O。{美元}(La,Sr)MnO {美元} sb3 {美元} -YSZ阴极/基板的界面电阻(通过陶瓷工艺制备)随着(La,Sr)MnO中YSZ体积分数的增加而降低{dollar} sb3 {dollar} -YSZ从0到60%。在YSZ的任一侧添加薄的多孔YDC层在(La,Sr)MnO {dol} sb3 {dol}阴极和Ni-YSZ阳极上都产生了大大降低的界面电阻。在阳极方面,YDC由于其混合的导电性而促进了电荷转移过程。在阴极侧,认为YDC的高氧表面交换系数是增强阴极性能的原因。这些电池提供的功率密度比以前报道的在750℃到40℃以下的功率密度更高。分别在600和750 {dol} spcirc {dollar} C时分别为300和760 mW / cm {dollar} sp2 {dollar}(以97%H {dollar} sb2 {dollar} + 3%H {dollar} sb2 {dollar } O和空气)。

著录项

  • 作者

    Tsai, Tsepin.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Materials Science.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号