首页> 外文学位 >Dynamic MEG-based imaging of focal neuronalcurrent sources.
【24h】

Dynamic MEG-based imaging of focal neuronalcurrent sources.

机译:基于动态MEG的局灶性神经元电流源成像。

获取原文
获取原文并翻译 | 示例

摘要

We describe a new approach to imaging neuronal currents from measurements of the magnetoencephalogram (MEG) and the electroencephalogram (EEG) associated with sensory, motor or cognitive brain activation. Previous approaches have concentrated on the use of weighted minimum norm inverse methods which often produce overly smoothed solutions and exhibit severe sensitivity to noise. Here we describe a Bayesian formulation in which a Gibbs prior is used to resolve ambiguities in the inverse problem.; Basic studies of functional activation reveal the sparse and localized nature of activation in the cerebral cortex. Our prior therefore specifically reflects the expectation that the current sources tend to be sparse and focal. This prior is combined with a Gaussian likelihood model for the data.; The general Bayesian framework presented allows us to introduce a broad range of information, either from other modalities or from prior physiological knowledge. This Bayesian formulation gives a complete probabilistic representation of the image, allowing us the to determine a large number of image properties (i.e., mean, variance, etc.) as well as use a variety of cost functionals on the density to find an estimate of the locations and time series amplitudes of neural sources.; We examine three cost functionals associated with this density. The maximum a posteriori method seeks to find the maximum of the joint density. We show a marginalization technique which integrates over all possible amplitudes to find a binary posterior density depending only on the on or off characteristic of each location. We show the MAP estimate over this marginalized density and show how we may approximately marginalize out all pixels except the pixel of interest, to achieve the maximizer of the posterior marginals solution.; This model is highly non-convex and involves discrete variables (indicating which pixels are active). To perform the optimization we use a continuation method based on mean field theory to guide the solution to a desirable local optimum. We demonstrate the method in application to computer generated data and realistic phantom studies and show favorable performance in comparison to minimum norm approaches.
机译:我们描述了一种通过测量与感觉,运动或认知脑部激活相关的脑磁图(MEG)和脑电图(EEG)来成像神经元电流的新方法。先前的方法集中于使用加权最小范数逆方法,该方法通常会产生过于平滑的解,并对噪声表现出严重的敏感性。在这里,我们描述了一种贝叶斯公式,其中使用吉布斯先验来解决逆问题中的歧义。功能激活的基础研究揭示了大脑皮层中激活的稀疏和局部性质。因此,我们的先验明确反映了人们对当前资源趋于稀疏和集中的期望。该先验与数据的高斯似然模型相结合。提出的一般贝叶斯框架使我们能够从其他方式或先前的生理知识中引入广泛的信息。贝叶斯公式给出了图像的完整概率表示,使我们能够确定大量图像属性(即均值,方差等),并在密度上使用各种成本函数来找到神经源的位置和时间序列幅度;我们研究了与此密度相关的三个成本函数。最大后验方法试图找到最大的关节密度。我们展示了一种边缘化技术,该技术在所有可能的幅度上进行积分以仅根据每个位置的开或关特征来找到二进制后验密度。我们展示了在这个边缘化密度上的MAP估计,并展示了我们如何近似边缘化除感兴趣像素之外的所有像素,以实现后边缘解决方案的最大化。该模型是高度非凸的,并且涉及离散变量(指示哪些像素处于活动状态)。为了执行优化,我们使用基于均值场理论的连续方法将解决方案引导至所需的局部最优值。我们演示了该方法在计算机生成的数据和现实的幻象研究中的应用,并显示了与最小范本方法相比的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号