首页> 外文学位 >Pharmacodynamic systems analysis of HDAC and proteasome inhibition in multiple myeloma.
【24h】

Pharmacodynamic systems analysis of HDAC and proteasome inhibition in multiple myeloma.

机译:多发性骨髓瘤中HDAC和蛋白酶体抑制的药效系统分析。

获取原文
获取原文并翻译 | 示例

摘要

Multiple myeloma (MM) is B-cell neoplasm characterized by abnormal proliferation of plasma cells. Principal signaling pathways such as NFkappaB, JAK-STAT, PI3K, RAS, and MAPK are deregulated in MM resulting in the abnormal proliferation and survival of myeloma cells. Consequently, inhibition of one pathway by any targeted agent likely results in compensation by other pathways, ultimately leading to ineffective therapy. Myeloma patients thus exhibit a repetitive pattern of remission and relapse and ultimately stop responding to any kind of therapy. The combination of bortezomib (a proteasome inhibitor) and vorinostat (a histone deacetylase inhibitor) has been proposed to have an enhanced cell killing effect by aggravation of cellular stress and apoptosis and has shown promising preclinical results. However, clinical studies emphasize the need for optimization of dosing regimens for these drugs for better efficacy. This highlights a gap in preclinical-clinical translation and warrants systematic studies to identify factors regulating drug interactions along with mechanistic and quantitative models for guiding the design of dosing schedules. Systems pharmacology provides a promising complementary approach to reductionist, semi-mechanistic, and empirical methods, as it aids in evaluating interactions between drugs and biological systems from a mechanistic-global perspective. The purpose of this dissertation is to evaluate the utility of a systems pharmacology-based approach in studying the efficacy of bortezomib and vorinostat in MM and advance the methods for analyzing drug combinations in oncology.;A Boolean network model, consisting of 79 proteins and 225 connections, was developed for bortezomib and vorinostat interactions in U266 myeloma cells, based on information regarding known apoptotic and cell survival pathways and mechanisms of drug action curated from the literature. A reduction algorithm was applied to identify critical proteins, and the network was qualified by comparing experimental data with dynamic model simulations. Interestingly, the systems network predicted an enhanced efficacy for the drug combination a priori of any experimentation (Chapter 2).;Pharmacological studies were conducted in U266 cells for bortezomib and vorinostat exposures as single agents and in combinations that ranged 30 different concentrations across 5 combination regimens. Semi-mechanistic modeling, using a non-competitive interaction model and empirical interaction parameters, suggested a synergistic effect for the sequential combination (bortezomib treatment for 24 hours followed by adding vorinostat for the next 24 hours) and an additive effect for their simultaneous combination for 48 hours. This emphasizes the importance of considering a timed dosing schedule in comparison to the norm of using maximal doses over long durations of exposure (Chapter 3).;A signaling model was constructed to bridge in vitro and in vivo vorinostat exposure-response relationships. Firstly, a LC/MS/MS method was developed and validated to measure vorinostat concentrations in cell culture medium to determine its temporal in vitro stability under culture conditions. Interestingly, vorinostat exhibited a biphasic degradation at both tested concentrations (2 and 5 muM), which were modeled with a bi-exponential decay function and subsequently used to drive pharmacodynamic effects (Chapter 4). A unified cellular model incorporating dynamics of p21, p53, BCL-xL, pNFkappaB, and cleaved PARP was successfully linked to describe in vitro cellular proliferation and in vivo tumor growth inhibition by vorinostat (Chapter 5). This analysis assisted in deriving a basic structural model for U266 pathway dynamics and their associated turnover parameters under vorinostat perturbation.;Results from Chapters 2-5 were assimilated to design a quantitative study in which the time-course of all critical proteins (identified from the systems network) was determined simultaneously using the MAGPIX Luminex system (multiplex immunoassay) at efficacious bortezomib and vorinostat concentrations. A systems model was developed with integrated turnover and time-dependent transduction functions that bridged exposure-response relationships for borteozmib and vorinostat as single agents and in two combination regimens with a single set of parameters. The model captured the trends in protein profiles well and was able to quantitatively characterize the biological basis of the sequence-dependent enhanced efficacy of bortezomib and vorinostat without the need for empirical interaction terms. The model was further extended in vivo wherein it effectively captured tumor volume inhibition in xenograft mice for single and combination dosing schedules of bortezomib and vorinostat (Chapter 6).;In summary, network based methodologies and traditional pharmacodynamics were successfully integrated and applied to conduct a mechanistic and quantitative evaluation of bortezomib and vorinostat combinations in MM. The final Boolean network can be used to study additional combinations with these agents and to identify potential drug targets in MM. In addition, the final dynamical systems model can be used to explore their in vivo preclinical dosing schedules. This approach provides a translational platform to evaluate and potentially optimize bortezomib/vorinostat combinations with biomarker driven interactions that can eventually be applied to make clinical dose projections. The overall approach may be adopted and generalized to study any drug combination and might aid in making drug development decisions from first principles.
机译:多发性骨髓瘤(MM)是B细胞肿瘤,其特征在于浆细胞异常增殖。 MM中的主要信号通路如NFkappaB,JAK-STAT,PI3K,RAS和MAPK失控,导致骨髓瘤细胞异常增殖和存活。因此,任何一种靶向药物对一种途径的抑制都可能导致其他途径的补偿,最终导致无效的治疗。因此,骨髓瘤患者表现出缓解和复发的重复模式,并最终停止对任何种类的治疗产生反应。有人提出硼替佐米(一种蛋白酶体抑制剂)和伏立诺他(组蛋白脱乙酰酶抑制剂)的组合通过加重细胞应激和细胞凋亡而具有增强的细胞杀伤作用,并显示出有希望的临床前结果。但是,临床研究强调需要优化这些药物的给药方案,以获得更好的疗效。这凸显了临床前临床翻译中的空白,并需要进行系统的研究以识别调节药物相互作用的因素,以及用于指导给药方案设计的机械和定量模型。系统药理学为还原论,半机械学和经验学方法提供了一种有前途的补充方法,因为它有助于从机械全局的角度评估药物与生物系统之间的相互作用。本论文的目的是评估基于系统药理学的方法在研究硼替佐米和伏立诺他对MM的疗效中的实用性,并提出分析肿瘤药物组合的方法。布尔网络模型,由79种蛋白质和225种蛋白质组成基于已知的有关凋亡和细胞存活途径以及药物作用机制的信息,开发了U266骨髓瘤细胞中硼替佐米和伏立诺他相互作用的药物连接。应用了一种还原算法来识别关键蛋白,并且通过将实验数据与动态模型仿真进行比较来对网络进行鉴定。有趣的是,系统网络预测了任何实验的先验性药物组合的功效(第2章);在U266​​细胞中进行了硼替佐米和伏立诺他单药暴露的药理研究,并以5种组合的30种不同浓度进行组合养生方法。使用非竞争性相互作用模型和经验性​​相互作用参数的半力学建模表明,该顺序组合具有协同效应(硼替佐米治疗24小时,然后在接下来的24小时加入伏立诺他),并且它们的同时组合具有累加效应。 48小时。与在长期暴露期间使用最大剂量的规范相比,这强调了考虑定时给药方案的重要性(第3章)。构建了信号模型以桥接体外和体内伏立诺他的暴露-反应关系。首先,开发并验证了LC / MS / MS方法以测量细胞培养基中的伏立诺他浓度,以确定其在培养条件下的时间体外稳定性。有趣的是,伏立诺他在两种测试浓度(2和5μM)下均表现出双相降解,并用双指数衰减函数建模并随后用于驱动药效学作用(第4章)。成功连接了一个整合了p21,p53,BCL-xL,pNFkappaB和裂解的PARP动力学的统一细胞模型,以描述伏立诺他在体外细胞增殖和体内肿瘤生长抑制的作用(第5章)。该分析有助于得出伏立诺他微扰下U266通路动力学及其相关的周转参数的基本结构模型。同化第2-5章的结果以设计定量研究,其中所有关键蛋白的时程(从系统使用有效的硼替佐米和伏立诺他浓度同时使用MAGPIX Luminex系统(多重免疫测定)同时测定。开发了具有集成周转率和时间依赖性转导功能的系统模型,该模型桥接了硼替佐米和伏立诺他作为单一药物的暴露-反应关系,并在具有一组参数的两种组合方案中建立了联系。该模型很好地捕获了蛋白质谱的趋势,并且能够定量表征硼替佐米和伏立诺他的序列依赖性增强功效的生物学基础,而无需经验相互作用项。该模型在体内得到进一步扩展,其中它在硼替佐米和伏立诺他的单次和联合给药方案中有效捕获了异种移植小鼠的肿瘤体积抑制作用(第6章)。,成功地整合了基于网络的方法和传统药效学,并将其用于对MM中的硼替佐米和伏立诺他组合进行机械和定量评估。最终的布尔网络可用于研究与这些药物的其他组合,并确定MM中潜在的药物靶标。此外,最终的动力学系统模型可用于探索其体内临床前给药方案。这种方法提供了一个翻译平台,可以评估和潜在地优化硼替佐米/伏立诺他与生物标志物驱动的相互作用,最终可用于进行临床剂量预测。可以采用整体方法来研究任何药物组合,并且可以帮助根据第一原则做出药物开发决策。

著录项

  • 作者

    Nanavati, Charvi.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Pharmaceutical sciences.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 317 p.
  • 总页数 317
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号