首页> 外文学位 >Occurrence and Function of Hoogsteen Base Pairs in Nucleic Acids.
【24h】

Occurrence and Function of Hoogsteen Base Pairs in Nucleic Acids.

机译:Hoogsteen碱基对在核酸中的发生和功能。

获取原文
获取原文并翻译 | 示例

摘要

Nucleic acids (DNA and RNA) play essential roles in the central dogma of biology for the storage and transfer of genetic information. The unique chemical and conformational structures of nucleic acids -- the double helix composed of complementary Watson-Crick base pairs, provide the structural basis to carry out their biological functions. DNA double helix can dynamically accommodate Watson-Crick and Hoogsteen base-pairing, in which the purine base is flipped by ~180° degrees to adopt syn rather than anti conformation as in Watson-Crick base pairs. There is growing evidence that Hoogsteen base pairs play important roles in DNA replication, recognition, damage or mispair accommodation and repair. Here, we constructed a database for existing Hoogsteen base pairs in DNA duplexes by a structure-based survey from the Protein Data Bank, and structural analyses based on the resulted Hoogsteen structures revealed that Hoogsteen base pairs occur in a wide variety of biological contexts and can induce DNA kinking towards the major groove. As there were documented difficulties in modeling Hoogsteen or Watson-Crick by crystallography, we collaborated with the Richardsons' lab and identified potential Hoogsteen base pairs that were mis-modeled as Watson-Crick base pairs which suggested that Hoogsteen can be more prevalent than it was thought to be. We developed solution NMR method combined with the site-specific isotope labeling to characterize the formation of, or conformational exchange with Hoogsteen base pairs in large DNA-protein complexes under solution conditions, in the absence of the crystal packing force. We showed that there are enhanced chemical exchange, potentially between Watson-Crick and Hoogsteen, at a sharp kink site in the complex formed by DNA and the Integration Host Factor protein. In stark contrast to B-form DNA, we found that Hoogsteen base pairs are strongly disfavored in A-form RNA duplex. Chemical modifications N 1-methyl adenosine and N1 -methyl guanosine that block Watson-Crick base-pairing, can be absorbed as Hoogsteen base pairs in DNA, but rather potently destabilized A-form RNA and caused helix melting. The intrinsic instability of Hoogsteen base pairs in A-form RNA endows the N1-methylation as a functioning post-transcriptional modification that was known to facilitate RNA folding, translation and potentially play roles in the epitranscriptome. On the other hand, the dynamic property of DNA that can accommodate Hoogsteen base pairs could be critical to maintaining the genome stability.
机译:核酸(DNA和RNA)在生物学的中心教条中对于遗传信息的存储和传递起着至关重要的作用。核酸的独特化学和构象结构-由互补的Watson-Crick碱基对组成的双螺旋结构为执行其生物学功能提供了结构基础。 DNA双螺旋结构可动态适应Watson-Crick和Hoogsteen碱基配对,其中嘌呤碱基可翻转〜180°以采用syn构象,而不是像Watson-Crick碱基对那样采用反构象。越来越多的证据表明,Hoogsteen碱基对在DNA复制,识别,破坏或错配调节和修复中起着重要作用。在这里,我们通过蛋白质数据库提供的基于结构的调查,为DNA双链体中现有的Hoogsteen碱基对构建了一个数据库,并基于所得的Hoogsteen结构进行结构分析,发现Hoogsteen碱基对发生在各种各样的生物学环境中,并且可以诱导DNA弯向大沟。由于通过晶体学建模对Hoogsteen或Watson-Crick建模存在困难,因此我们与Richardsons的实验室合作,确定了被错误建模为Watson-Crick碱基对的潜在Hoogsteen碱基对,这表明Hoogsteen可能比以前更普遍。被认为是。我们开发了溶液NMR方法,并结合了位点特异性同位素标记来表征在溶液条件下,在没有晶体堆积力的情况下,大型DNA-蛋白质复合物中Hoogsteen碱基对的形成或构象交换。我们显示,在由DNA和整合宿主因子蛋白形成的复合物中,在一个尖锐的扭结位点上,沃森-克里克和霍格斯汀之间可能存在增强的化学交换。与B型DNA形成鲜明对比的是,我们发现Hoogsteen碱基对在A型RNA双链体中非常不利。阻止Watson-Crick碱基配对的化学修饰的N 1-甲基腺苷和N1-甲基鸟苷可以作为DNA中的Hoogsteen碱基对被吸收,但会强烈破坏A型RNA的稳定性并引起螺旋熔化。 A型RNA中Hoogsteen碱基对的固有不稳定性使N1-甲基化成为功能性的转录后修饰,已知该修饰有助于RNA折叠,翻译并可能在表观转录组中发挥作用。另一方面,可以容纳Hoogsteen碱基对的DNA的动态特性对于维持基因组稳定性至关重要。

著录项

  • 作者

    Zhou, Huiqing.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Biochemistry.;Genetics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号