首页> 外文学位 >Thermal and thermodynamic properties of fully dense nanocrystalline Ni and Ni-Fe alloys.
【24h】

Thermal and thermodynamic properties of fully dense nanocrystalline Ni and Ni-Fe alloys.

机译:完全致密的纳米镍和镍铁合金的热和热力学性质。

获取原文
获取原文并翻译 | 示例

摘要

A relatively new field of study in materials science involves the development of polycrystalline materials with ultra-fine grain sizes on the order of 100 nm or less. Such materials, commonly referred to as "nanocrystalline materials", are distinct from conventional polycrystalline materials in that novel mechanical, physical and chemical properties have been identified. Although several prominent methods of nanocrystalline material fabrication have been developed, early experiments, such as those performed on gas condensed and consolidated nanocrystalline materials with considerable amounts of entrained porosity, have shown greatly modified properties. However, there has been little published work that experimentally establishes the intrinsic properties of porosity-free nanocrystalline materials resulting from the large fraction of atoms associated with the interfacial regions. Such fully dense nanocrystalline materials can be fabricated, for example, by electrodeposition techniques.; In the present work, thermal and thermodynamic properties were measured on fully dense nanocrystalline electrodeposits and compared with results obtained for conventional polycrystalline material and other nanocrystalline materials containing porosity.; A comprehensive evaluation has been performed to examine atomic defect structure using positron lifetime spectroscopy, diffusivity using Rutherford Backscattering Spectrometry and Auger Electron Spectroscopy, thermodynamic functions including thermal expansion, heat capacity, grain growth activation energy, and some of the first direct measurements of volume averaged interfacial enthalpy. In contrast to porosity-containing gas condensed materials, these experiments have demonstrated no significant deviation in thermal expansion and heat capacity, no measurable enhancement of heterodiffusion coefficient and no resolvable contribution to defect structure from nanometre sized voids or other regions of excess free volume. However, thermal expansion was found to be sensitive to grain growth and showed a significant negative deviation beginning at temperatures coinciding with the grain growth temperature.; These experimental results demonstrate the true impact of a high interfacial volume fraction brought about by ultra-fine grain size on those properties of porosity-free electroplated nanocrystalline Ni and Ni-Fe alloys. Scanning calorimetry work performed with 90at.%Ni-10at.%Fe, 80at.%Ni-20at.%Fe and 52at.%Ni-48at.%Fe has provided evidence to support solid state phase transformations, including the possible ordering reaction from disordered fcc {dollar}gamma{dollar}(Ni,Fe) to ordered {dollar}rmgammaspprime(Nisb3Fe),{dollar} in the case of 80at.%/Ni-20at.%Fe. Shorter diffusion distances available with nanostructures may explain the rapid formation of the ordered intermetallic phase.; This research work establishes and advances the knowledge base for properties of fully dense, porosity-free nanocrystalline materials. This is required for a better fundamental understanding and for identifying future engineering applications. The work therefore provides an insight into the phenomenological processes which contribute in a novel way to properties observed in nanocrystalline materials as compared to the properties of conventional grain sized polycrystalline materials.
机译:材料科学的一个相对较新的研究领域涉及开发具有100 nm或更小的超细晶粒尺寸的多晶材料。通常被称为“纳米晶体材料”的这种材料与常规的多晶材料的不同之处在于,已经确定了新颖的机械,物理和化学性质。尽管已经开发出几种突出的纳米晶体材料制造方法,但是早期的实验,例如在具有大量夹带孔隙率的气体冷凝和固结的纳米晶体材料上进行的实验,已显示出极大的改性。然而,很少有已发表的工作通过实验建立无孔隙的纳米晶体材料的固有性质,所述无孔隙的纳米晶体材料是由与界面区域相关的大部分原子所产生的。这样的完全致密的纳米晶体材料可以例如通过电沉积技术来制造。在本工作中,对完全致密的纳米晶体电沉积物的热和热力学性质进行了测量,并将其与常规多晶材料和其他具有孔隙率的纳米晶体材料的结果进行了比较。已经进行了全面的评估,以使用正电子寿命光谱法检查原子缺陷结构,使用卢瑟福背散射光谱法和俄歇电子能谱仪检查扩散率,热力学函数(包括热膨胀,热容,晶粒生长活化能)以及一些体积平均的首次直接测量值界面焓。与含气孔的气体冷凝材料相反,这些实验表明,热膨胀和热容量没有显着偏差,杂散系数没有可测量的提高,并且纳米尺寸的空隙或其他自由体积过多的区域对缺陷结构也没有可分辨的贡献。然而,发现热膨胀对晶粒生长敏感,并且在与晶粒生长温度相吻合的温度开始显示出显着的负偏差。这些实验结果证明了超细晶粒尺寸带来的高界面体积分数对无孔电镀纳米晶Ni和Ni-Fe合金的那些性能的真正影响。用90at。%Ni-10at。%Fe,80at。%Ni-20at。%Fe和52at。%Ni-48at。%Fe进行的扫描量热工作提供了支持固态相变的证据,包括可能的有序反应。在80at。%/ Ni-20at。%Fe的情况下,无序fcc {dollar} gamma {dollar}(Ni,Fe)会订购{dollar} rmgammaspprime(Nisb3Fe){dollar}。纳米结构可用的较短的扩散距离可以解释有序金属间相的快速形成。这项研究工作为完全致密,无孔隙的纳米晶体材料的性能建立和发展了知识库。这是更好的基础知识和确定未来工程应用程序所必需的。因此,与常规的晶粒大小的多晶材料的性能相比,这项工作提供了一种现象学方法的见解,该现象学方法以新颖的方式对纳米晶材料中观察到的性能做出了贡献。

著录项

  • 作者

    Turi, Tibor.;

  • 作者单位

    Queen's University at Kingston (Canada).;

  • 授予单位 Queen's University at Kingston (Canada).;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号