首页> 外文学位 >Carbon formation during carbon-dioxide reforming of methane.
【24h】

Carbon formation during carbon-dioxide reforming of methane.

机译:甲烷二氧化碳重整过程中的积碳。

获取原文
获取原文并翻译 | 示例

摘要

Present energy and environment situations have renewed interest in using methane and carbon dioxide, the cheapest sources of carbon and two major greenhouse gases. Fortunately, methane can be reformed by carbon dioxide to produce syngas, a mixture of carbon monoxide and hydrogen, and a feedstock for many chemical processes. This process is of special interested when carbon monoxide or syngas with a high carbon monoxide to hydrogen ratio is desired, or carbon dioxide coexists in natural gas.; Previous work finished in our group found that platinum-rhenium, bimetallic catalysts have excellent stability and activity for this process at temperature above 800°C, but dramatically lose the superiority at low temperatures. The goals of this work are to understand the catalytic performance of bimetallic catalysts and to screen catalysts that are promising at low temperature reforming.; Carbon formation in reforming on the catalyst is minimized when Re is added to Pt to form bimetallic Pt-Re catalysts due to an ensemble effect. Rhenium divides Pt into smaller ensembles, which are big enough to catalyze reforming and small enough to prohibit carbon formation, which requires ensembles containing more active sites. There is no carbon formation in reforming for Re-rich bimetallic catalysts. The deactivation and low activity of these catalysts at low temperature are not due to carbon deposition, but to the interaction between carbon dioxide and Re. Carbon dioxide poisons the catalysts at low temperatures.; Yttria-stabilized zirconia (YSZ)-supported catalysts are better than alumina-supported catalysts for the process because of lower acidity (therefore, lower carbon deposition) and possibly oxygen mobility. Most YSZ-supported catalysts show very high activity and stability. The sequences of activity are Rh/Al2O3 > Pt/Al2O3 > Pd/Al 2O3 > Ir/Al2O3 > Ru/Al2O 3 Re/Al2O3, and Pt/YSZ > Rh/YSZ > Ru/YSZ > Ir/YSZ > Pd/YSZ Re/YSZ. The deactivation sequences are Pt/Al2O 3 > Pd/Al2O3 > Ir/Al2O3 > Rh/Al2O3, Ru/Al2O3, and Re/Al 2O3, and Pd/YSZ Pt/YSZ > Ir/YSZ, Rh/YSZ, Ru/YSZ, and Re/YSZ. Combining stability, activity, and current price, Ru/YSZ is the most promising catalyst. Other candidates are Rh/YSZ, Ir/YSZ, Pt/YSZ, Rh/Al2O 3 and Ru/Al2O3. These catalysts work well at all temperature ranges.
机译:当前的能源和环境状况重新引起了人们对使用甲烷和二氧化碳的兴趣,甲烷和二氧化碳是最便宜的碳源和两种主要温室气体。幸运的是,甲烷可以被二氧化碳重整以产生合成气,一氧化碳和氢气的混合物以及许多化学过程的原料。当需要一氧化碳或具有高一氧化碳与氢之比的合成气,或二氧化碳共存于天然气中时,此方法特别有用。我们小组之前完成的工作发现,铂-双金属催化剂在高于800°C的温度下具有出色的稳定性和活性,但在低温下却失去了优越性。这项工作的目的是了解双金属催化剂的催化性能,并筛选在低温重整中很有前景的催化剂。当将Re添加到Pt中以形成整体金属Pt-Re催化剂时,由于整体效应,使催化剂重整过程中的碳形成减至最少。 hen将Pt分成较小的集合体,该集合体足够大以催化重整,并且足够小以阻止碳形成,这需要包含更多活性位点的集合体。重整富含Re的双金属催化剂不会重整碳。这些催化剂在低温下的失活和低活性不是由于碳沉积,而是由于二氧化碳和Re之间的相互作用。二氧化碳在低温下会毒化催化剂。在该方法中,氧化钇稳定的氧化锆(YSZ)负载的催化剂比氧化铝负载的催化剂更好,这是因为较低的酸度(因此,较低的碳沉积)和可能的氧迁移率。大多数YSZ负载的催化剂显示出很高的活性和稳定性。活性顺序为Rh / Al2O3> Pt / Al2O3> Pd / Al 2O3> Ir / Al2O3> Ru / Al2O 3 Re / Al2O3,以及Pt / YSZ> Rh / YSZ> Ru / YSZ> Ir / YSZ> Pd / YSZ Re / YSZ。失活顺序为Pt / Al2O 3> Pd / Al2O3> Ir / Al2O3> Rh / Al2O3,Ru / Al2O3和Re / Al 2O3,以及Pd / YSZ Pt / YSZ> Ir / YSZ,Rh / YSZ,Ru / YSZ和Re / YSZ。结合稳定性,活性和当前价格,Ru / YSZ是最有前途的催化剂。其他候选物是Rh / YSZ,Ir / YSZ,Pt / YSZ,Rh / Al2O 3和Ru / Al2O3。这些催化剂在所有温度范围内都能很好地工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号