首页> 外文学位 >A two-dimensional numerical simulation of diesel autoignition using a quasi-global multi-step kinetic mechanism.
【24h】

A two-dimensional numerical simulation of diesel autoignition using a quasi-global multi-step kinetic mechanism.

机译:基于准全局多步动力学机制的柴油机自燃二维数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

A "quasi-global," 26-step chemical kinetic reaction mechanism proposed by R. B. Edelman and P. T. Harsha (14) was implemented into a transient, two-dimensional, finite-difference numerical simulation to model diesel engine autoignition and combustion. Information provided by Detroit Diesel for the Series 60 11.1 Liter engine was used to set the model engine geometry and operating conditions of the simulation. A modified form of the k-{dollar}varepsilon{dollar} equations was used to account for the effects of turbulence on the flowfield. Fuel spray injection and evaporation were modeled using a discrete-particle method. For comparison purposes, a single global chemical kinetic reaction was also used to model diesel autoignition and combustion. The use of the Edelman-Harsha mechanism predicted an ignition delay time of 2.1ms and a maximum average cylinder pressure of 3.33 MPa (32.9 atm), occurring at 8.0{dollar}spcirc{dollar} ATDC. The use of the single global kinetic reaction predicted an ignition delay time of 2.8ms and a maximum average cylinder pressure of 4.09 MPa (40.3 atm), occurring at 12.5{dollar}spcirc{dollar} ATDC. As expected, the model predicting the shorter ignition delay also predicted the smaller pressure rise. Fuel mass burning rate plots indicate that the Edelman-Harsha kinetic mechanism provides a better qualitative model than does the single global kinetic reaction of the three phases of diesel combustion: ignition delay, rapid combustion, and mixing controlled combustion. Predicted results were observed to be highly sensitive to Arrhenius reaction rate coefficient constant values and to computational mesh spacing.
机译:R. B. Edelman和P. T. Harsha(14)提出的“准全局” 26步化学动力学反应机理被实现为瞬态,二维,有限差分数值模拟,以模拟柴油机的自动点火和燃烧。底特律柴油机提供的有关60系列11.1升发动机的信息用于设置模型发动机的几何形状和仿真的工作条件。使用k- {dollar} varepsilon {dollar}方程的修正形式来说明湍流对流场的影响。使用离散粒子方法对燃油喷射和蒸发进行建模。为了进行比较,还使用一个整体化学动力学反应来模拟柴油的自燃和燃烧。使用Edelman-Harsha机制可预测点火延迟时间为2.1ms,最大平均气缸压力为3.33 MPa(32.9 atm),发生在8.0 ATDC。使用单个整体动力学反应预测点火延迟时间为2.8ms,最大平均汽缸压力为4.09 MPa(40.3 atm),发生在12.5 ATDC。如预期的那样,预测点火延迟更短的模型也预测压力上升较小。燃料质量燃烧速率图表明,与柴油燃烧三个阶段的单一整体动力学反应(点火延迟,快速燃烧和混合控制燃烧)相比,Edelman-Harsha动力学机理提供了更好的定性模型。观察到的预测结果对Arrhenius反应速率系数常数值和计算网格间距高度敏感。

著录项

  • 作者

    Biegel, Dennis.;

  • 作者单位

    The Cooper Union for the Advancement of Science and Art.;

  • 授予单位 The Cooper Union for the Advancement of Science and Art.;
  • 学科 Engineering Automotive.; Engineering Mechanical.
  • 学位 M.E.
  • 年度 1997
  • 页码 96 p.
  • 总页数 96
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术及设备;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号