首页> 外文学位 >Time-resolved studies of the protein bacteriorhodopsin using femtosecond laser pulses.
【24h】

Time-resolved studies of the protein bacteriorhodopsin using femtosecond laser pulses.

机译:飞秒激光脉冲对细菌视紫红质蛋白的时间分辨研究。

获取原文
获取原文并翻译 | 示例

摘要

The primary events in the all-trans to 13-cis photoisomerization of retinal in bacteriorhodopsin have been investigated with femtosecond time-resolved absorbance spectroscopy. Spectra measured over a broad range extending from 7,000-22,400 cm{dollar}sp{lcub}-1{rcub}{dollar} reveal features whose dynamics are inconsistent with a model proposed earlier to account for the highly efficient photoisomerization process. Emerging from this work is a new three-state model. Photoexcitation of retinal with visible light accesses a shallow well on the excited state potential energy surface. This well is bounded by a small barrier, arising from an avoided crossing that separates the Franck-Condon region from the nearby reactive region of the photoisomerization coordinate. At ambient temperatures, the reactive region is accessed with a time constant of {dollar}sim{dollar}500 fs, whereupon the retinal rapidly twists and encounters a second avoided crossing region. The driving force for photoisomerization resides in the retinal, not in the surrounding protein. This view contrasts with an earlier model where photoexcitation was thought to access directly a reactive region of the excited state potential and thereby drive the retinal to a twisted conformation within 100-200 fs.
机译:用飞秒时间分辨吸收光谱法研究了细菌视紫红质中视网膜的全反式至13-顺式光异构化的主要事件。在7,000-22,400 cm {dollar} sp {lcub} -1 {rcub} {dollar}范围内测量的光谱揭示了其动力学特性与先前提出的用于解释高效光异构化过程的模型不一致的特征。这项工作产生了一个新的三态模型。用可见光对视网膜进行光激发进入激发态势能表面上的浅阱。该井的边界很小,这是由于避免了将弗兰克-康登区与附近的光异构化坐标的反应区分开的交叉所引起的。在环境温度下,以500fs的时间常数进入反应区域,于是视网膜迅速扭曲并遇到第二个避免的交叉区域。光异构化的驱动力在于视网膜,而不是周围的蛋白质。这种观点与先前的模型形成了鲜明对比,在早期的模型中,光激发被认为可以直接进入激发态电势的反应区域,从而将视网膜驱动至100-200 fs内的扭曲构象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号